1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
#ifndef _ARM_CPUFUNC_H
#define _ARM_CPUFUNC_H
#if 0
/* check interrupt state */
static inline void check_int(unsigned int state, int line)
{
unsigned int cpsr = 0;
asm volatile("mrs %0, cpsr" : "=r" (cpsr));
if ((cpsr & PSR_F) != (state & PSR_F))
printf("%d: FIQs are unexpectedly %s\n", line, (cpsr & PSR_F) ? "MASKED" : "UNMASKED");
if ((cpsr & PSR_I) != (state & PSR_I))
printf("%d: IRQs are unexpectedly %s\n", line, (cpsr & PSR_I) ? "MASKED" : "UNMASKED");
}
#endif
/* Data memory barrier */
static inline void dmb(void)
{
asm volatile("dmb" : : : "memory");
}
/* Data synchronization barrier */
static inline void dsb(void)
{
asm volatile("dsb" : : : "memory");
}
/* Instruction synchronization barrier */
static inline void isb(void)
{
asm volatile("isb" : : : "memory");
}
static inline void barrier(void)
{
dsb();
isb();
}
/* Read CLIDR, Cache Level ID Register */
static inline u32_t read_clidr(void){
u32_t clidr;
asm volatile("mrc p15, 1, %[clidr], c0, c0 , 1 @ READ CLIDR\n\t"
: [clidr] "=r" (clidr));
return clidr;
}
/* Read CSSELR, Cache Size Selection Register */
static inline u32_t read_csselr(void){
u32_t csselr;
asm volatile("mrc p15, 2, %[csselr], c0, c0 , 0 @ READ CSSELR\n\t"
: [csselr] "=r" (csselr));
return csselr;
}
/* Write CSSELR, Cache Size Selection Register */
static inline void write_csselr(u32_t csselr){
asm volatile("mcr p15, 2, %[csselr], c0, c0 , 0 @ WRITE CSSELR\n\t"
: : [csselr] "r" (csselr));
}
/* Read Cache Size ID Register */
static inline u32_t read_ccsidr(void)
{
u32_t ccsidr;
asm volatile("mrc p15, 1, %[ccsidr], c0, c0, 0 @ Read CCSIDR\n\t"
: [ccsidr] "=r" (ccsidr));
return ccsidr;
}
/* Read TLBTR, TLB Type Register */
static inline u32_t read_tlbtr(void)
{
u32_t tlbtr;
asm volatile("mrc p15, 0, %[tlbtr], c0, c0, 3 @ Read TLBTR\n\t"
: [tlbtr] "=r" (tlbtr));
return tlbtr;
}
/* keesj:move these out */
static inline u32_t ilog2(u32_t t)
{
u32_t counter =0;
while( (t = t >> 1) ) counter ++;
return counter;
}
/* keesj:move these out */
static inline u32_t ipow2(u32_t t)
{
return 1 << t;
}
/*
* type = 1 == CLEAN
* type = 2 == INVALIDATE
*/
static inline void dcache_maint(int type){
u32_t cache_level ;
u32_t clidr;
u32_t ctype;
u32_t ccsidr;
u32_t line_size,line_length;
u32_t number_of_sets,number_of_ways;
u32_t set,way;
clidr = read_clidr();
u32_t loc = ( clidr >> 24) & 0x7;
u32_t louu = ( clidr >> 27) & 0x7;
u32_t louis = ( clidr >> 21) & 0x7;
for (cache_level =0 ; cache_level < loc; cache_level++){
/* get current cache type */
ctype = ( clidr >> cache_level*3) & 0x7;
/* select data or unified or cache level */
write_csselr(cache_level << 1);
isb();
ccsidr = read_ccsidr();
line_size = ccsidr & 0x7;
line_length = 2 << (line_size + 1) ; /* 2**(line_size + 2) */
number_of_sets = ((ccsidr >> 13) & 0x7fff) + 1;
number_of_ways = ((ccsidr >> 3) & 0x3ff) + 1;
u32_t way_bits = ilog2(number_of_ways);
if(ipow2(ilog2(number_of_ways) < number_of_ways) ) {
way_bits++;
}
u32_t l = ilog2(line_length);
for (way =0 ; way < number_of_ways; way++) {
for (set =0 ; set < number_of_sets; set++) {
u32_t val = ( way << (32 - way_bits) ) | (set << l) | (cache_level << 1 );
if (type == 1) {
/* DCCISW, Data Cache Clean and Invalidate by Set/Way */
asm volatile("mcr p15, 0, %[set], c7, c14, 2 @ DCCISW"
: : [set] "r" (val));
} else if (type ==2 ){
/* DCISW, Data Cache Invalidate by Set/Way */
asm volatile("mcr p15, 0, %[set], c7, c6, 2"
: : [set] "r" (val));
}
}
}
}
dsb();
isb();
}
static inline void dcache_clean(void){
dcache_maint(1);
}
static inline void dcache_invalidate(void){
dcache_maint(2);
}
static inline void refresh_tlb(void)
{
dsb();
/* Invalidate entire unified TLB */
asm volatile("mcr p15, 0, %[zero], c8, c7, 0 @ TLBIALL\n\t" : : [zero] "r" (0));
#if 0
/* Invalidate entire data TLB */
asm volatile("mcr p15, 0, %[zero], c8, c6, 0" : : [zero] "r" (0));
/* Invalidate entire instruction TLB */
asm volatile("mcr p15, 0, %[zero], c8, c5, 0" : : [zero] "r" (0));
#endif
/*
* Invalidate all instruction caches to PoU.
* Also flushes branch target cache.
*/
asm volatile("mcr p15, 0, %[zero], c7, c5, 0" : : [zero] "r" (0));
/* Invalidate entire branch predictor array */
asm volatile("mcr p15, 0, %[zero], c7, c5, 6" : : [zero] "r" (0)); /* flush BTB */
dsb();
isb();
}
/* Read System Control Register */
static inline u32_t read_sctlr(void)
{
u32_t ctl;
asm volatile("mrc p15, 0, %[ctl], c1, c0, 0 @ Read SCTLR\n\t"
: [ctl] "=r" (ctl));
return ctl;
}
/* Write System Control Register */
static inline void write_sctlr(u32_t ctl)
{
asm volatile("mcr p15, 0, %[ctl], c1, c0, 0 @ Write SCTLR\n\t"
: : [ctl] "r" (ctl));
isb();
}
/* Read Translation Table Base Register 0 */
static inline u32_t read_ttbr0(void)
{
u32_t bar;
asm volatile("mrc p15, 0, %[bar], c2, c0, 0 @ Read TTBR0\n\t"
: [bar] "=r" (bar));
return bar & ARM_TTBR_ADDR_MASK;
}
/* Write Translation Table Base Register 0 */
static inline void write_ttbr0(u32_t bar)
{
barrier();
/* In our setup TTBR contains the base address *and* the flags
but other pieces of the kernel code expect ttbr to be the
base address of the l1 page table. We therefore add the
flags here and remove them in the read_ttbr0 */
u32_t v = (bar & ARM_TTBR_ADDR_MASK ) | ARM_TTBR_FLAGS_CACHED;
asm volatile("mcr p15, 0, %[bar], c2, c0, 0 @ Write TTBR0\n\t"
: : [bar] "r" (v));
refresh_tlb();
}
/* Reload Translation Table Base Register 0 */
static inline void reload_ttbr0(void)
{
reg_t ttbr = read_ttbr0();
write_ttbr0(ttbr);
}
/* Read Translation Table Base Register 1 */
static inline u32_t read_ttbr1(void)
{
u32_t bar;
asm volatile("mrc p15, 0, %[bar], c2, c0, 1 @ Read TTBR1\n\t"
: [bar] "=r" (bar));
return bar;
}
/* Write Translation Table Base Register 1 */
static inline void write_ttbr1(u32_t bar)
{
barrier();
asm volatile("mcr p15, 0, %[bar], c2, c0, 1 @ Write TTBR1\n\t"
: : [bar] "r" (bar));
refresh_tlb();
}
/* Reload Translation Table Base Register 1 */
static inline void reload_ttbr1(void)
{
reg_t ttbr = read_ttbr1();
write_ttbr1(ttbr);
}
/* Read Translation Table Base Control Register */
static inline u32_t read_ttbcr(void)
{
u32_t bcr;
asm volatile("mrc p15, 0, %[bcr], c2, c0, 2 @ Read TTBCR\n\t"
: [bcr] "=r" (bcr));
return bcr;
}
/* Write Translation Table Base Control Register */
static inline void write_ttbcr(u32_t bcr)
{
asm volatile("mcr p15, 0, %[bcr], c2, c0, 2 @ Write TTBCR\n\t"
: : [bcr] "r" (bcr));
isb();
}
/* Read Domain Access Control Register */
static inline u32_t read_dacr(void)
{
u32_t dacr;
asm volatile("mrc p15, 0, %[dacr], c3, c0, 0 @ Read DACR\n\t"
: [dacr] "=r" (dacr));
return dacr;
}
/* Write Domain Access Control Register */
static inline void write_dacr(u32_t dacr)
{
asm volatile("mcr p15, 0, %[dacr], c3, c0, 0 @ Write DACR\n\t"
: : [dacr] "r" (dacr));
isb();
}
/* Read Data Fault Status Register */
static inline u32_t read_dfsr(void)
{
u32_t fsr;
asm volatile("mrc p15, 0, %[fsr], c5, c0, 0 @ Read DFSR\n\t"
: [fsr] "=r" (fsr));
return fsr;
}
/* Write Data Fault Status Register */
static inline void write_dfsr(u32_t fsr)
{
asm volatile("mcr p15, 0, %[fsr], c5, c0, 0 @ Write DFSR\n\t"
: : [fsr] "r" (fsr));
isb();
}
/* Read Instruction Fault Status Register */
static inline u32_t read_ifsr(void)
{
u32_t fsr;
asm volatile("mrc p15, 0, %[fsr], c5, c0, 1 @ Read IFSR\n\t"
: [fsr] "=r" (fsr));
return fsr;
}
/* Write Instruction Fault Status Register */
static inline void write_ifsr(u32_t fsr)
{
asm volatile("mcr p15, 0, %[fsr], c5, c0, 1 @ Write IFSR\n\t"
: : [fsr] "r" (fsr));
isb();
}
/* Read Data Fault Address Register */
static inline u32_t read_dfar(void)
{
u32_t far;
asm volatile("mrc p15, 0, %[far], c6, c0, 0 @ Read DFAR\n\t"
: [far] "=r" (far));
return far;
}
/* Write Data Fault Address Register */
static inline void write_dfar(u32_t far)
{
asm volatile("mcr p15, 0, %[far], c6, c0, 0 @ Write DFAR\n\t"
: : [far] "r" (far));
isb();
}
/* Read Instruction Fault Address Register */
static inline u32_t read_ifar(void)
{
u32_t far;
asm volatile("mrc p15, 0, %[far], c6, c0, 2 @ Read IFAR\n\t"
: [far] "=r" (far));
return far;
}
/* Write Instruction Fault Address Register */
static inline void write_ifar(u32_t far)
{
asm volatile("mcr p15, 0, %[far], c6, c0, 2 @ Write IFAR\n\t"
: : [far] "r" (far));
isb();
}
/* Read Vector Base Address Register */
static inline u32_t read_vbar(void)
{
u32_t vbar;
asm volatile("mrc p15, 0, %[vbar], c12, c0, 0 @ Read VBAR\n\t"
: [vbar] "=r" (vbar));
return vbar;
}
/* Write Vector Base Address Register */
static inline void write_vbar(u32_t vbar)
{
asm volatile("mcr p15, 0, %[vbar], c12, c0, 0 @ Write VBAR\n\t"
: : [vbar] "r" (vbar));
isb();
}
/* Read the Main ID Register */
static inline u32_t read_midr(void)
{
u32_t id;
asm volatile("mrc p15, 0, %[id], c0, c0, 0 @ read MIDR\n\t"
: [id] "=r" (id));
return id;
}
/* Read Auxiliary Control Register */
static inline u32_t read_actlr(void)
{
u32_t ctl;
asm volatile("mrc p15, 0, %[ctl], c1, c0, 1 @ Read ACTLR\n\t"
: [ctl] "=r" (ctl));
return ctl;
}
/* Write Auxiliary Control Register */
static inline void write_actlr(u32_t ctl)
{
//http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/Babjbjbb.html
asm volatile("mcr p15, 0, %[ctl], c1, c0, 1 @ Write ACTLR\n\t"
: : [ctl] "r" (ctl));
isb();
}
/* Read Current Program Status Register */
static inline u32_t read_cpsr(void)
{
u32_t status;
asm volatile("mrs %[status], cpsr @ read CPSR"
: [status] "=r" (status));
return status;
}
/* Write Current Program Status Register */
static inline void write_cpsr(u32_t status)
{
asm volatile("msr cpsr_c, %[status] @ write CPSR"
: : [status] "r" (status));
}
#endif /* _ARM_CPUFUNC_H */
|