1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/* This file contains the architecture-independent clock functionality, which
* handles time related functions. Important events that are handled here
* include setting and monitoring alarm timers and deciding when to
* (re)schedule processes. System services can access its services through
* system calls, such as sys_setalarm().
*
* Changes:
* Aug 18, 2006 removed direct hardware access etc, MinixPPC (Ingmar Alting)
* Oct 08, 2005 reordering and comment editing (A. S. Woodhull)
* Mar 18, 2004 clock interface moved to SYSTEM task (Jorrit N. Herder)
* Sep 30, 2004 source code documentation updated (Jorrit N. Herder)
* Sep 24, 2004 redesigned alarm timers (Jorrit N. Herder)
*/
#include <minix/endpoint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "clock.h"
#ifdef USE_WATCHDOG
#include "watchdog.h"
#endif
/* Function prototype for PRIVATE functions.
*/
static void load_update(void);
/* The CLOCK's timers queue. The functions in <minix/timers.h> operate on this.
* Each system process possesses a single synchronous alarm timer. If other
* kernel parts want to use additional timers, they must declare their own
* persistent (static) timer structure, which can be passed to the clock
* via (re)set_kernel_timer().
* When a timer expires its watchdog function is run by the CLOCK task.
*/
static minix_timer_t *clock_timers; /* queue of CLOCK timers */
/* Number of ticks to adjust realtime by. A negative value implies slowing
* down realtime, a positive value implies speeding it up.
*/
static int32_t adjtime_delta = 0;
/*
* Initialize the clock variables.
*/
void
init_clock(void)
{
char *value;
/* Initialize clock information structure. */
memset(&kclockinfo, 0, sizeof(kclockinfo));
/* Get clock tick frequency. */
value = env_get("hz");
if (value != NULL)
kclockinfo.hz = atoi(value);
if (value == NULL || kclockinfo.hz < 2 || kclockinfo.hz > 50000)
kclockinfo.hz = DEFAULT_HZ;
/* Load average data initialization. */
memset(&kloadinfo, 0, sizeof(kloadinfo));
}
/*
* The boot processor's timer interrupt handler. In addition to non-boot cpus
* it keeps real time and notifies the clock task if need be.
*/
int timer_int_handler(void)
{
/* Update user and system accounting times. Charge the current process
* for user time. If the current process is not billable, that is, if a
* non-user process is running, charge the billable process for system
* time as well. Thus the unbillable process' user time is the billable
* user's system time.
*/
struct proc * p, * billp;
/* FIXME watchdog for slave cpus! */
#ifdef USE_WATCHDOG
/*
* we need to know whether local timer ticks are happening or whether
* the kernel is locked up. We don't care about overflows as we only
* need to know that it's still ticking or not
*/
watchdog_local_timer_ticks++;
#endif
if (cpu_is_bsp(cpuid)) {
kclockinfo.uptime++;
/* if adjtime_delta has ticks remaining, apply one to realtime.
* limit changes to every other interrupt.
*/
if (adjtime_delta != 0 && kclockinfo.uptime & 0x1) {
/* go forward or stay behind */
kclockinfo.realtime += (adjtime_delta > 0) ? 2 : 0;
adjtime_delta += (adjtime_delta > 0) ? -1 : +1;
} else {
kclockinfo.realtime++;
}
}
/* Update user and system accounting times. Charge the current process
* for user time. If the current process is not billable, that is, if a
* non-user process is running, charge the billable process for system
* time as well. Thus the unbillable process' user time is the billable
* user's system time.
*/
p = get_cpulocal_var(proc_ptr);
billp = get_cpulocal_var(bill_ptr);
p->p_user_time++;
if (! (priv(p)->s_flags & BILLABLE)) {
billp->p_sys_time++;
}
/* Decrement virtual timers, if applicable. We decrement both the
* virtual and the profile timer of the current process, and if the
* current process is not billable, the timer of the billed process as
* well. If any of the timers expire, do_clocktick() will send out
* signals.
*/
if ((p->p_misc_flags & MF_VIRT_TIMER) && (p->p_virt_left > 0)) {
p->p_virt_left--;
}
if ((p->p_misc_flags & MF_PROF_TIMER) && (p->p_prof_left > 0)) {
p->p_prof_left--;
}
if (! (priv(p)->s_flags & BILLABLE) &&
(billp->p_misc_flags & MF_PROF_TIMER) &&
(billp->p_prof_left > 0)) {
billp->p_prof_left--;
}
/*
* Check if a process-virtual timer expired. Check current process, but
* also bill_ptr - one process's user time is another's system time, and
* the profile timer decreases for both!
*/
vtimer_check(p);
if (p != billp)
vtimer_check(billp);
/* Update load average. */
load_update();
if (cpu_is_bsp(cpuid)) {
/*
* If a timer expired, notify the clock task. Keep in mind
* that clock tick values may overflow, so we must only look at
* relative differences, and only if there are timers at all.
*/
if (clock_timers != NULL &&
tmr_has_expired(clock_timers, kclockinfo.uptime))
tmrs_exptimers(&clock_timers, kclockinfo.uptime, NULL);
#ifdef DEBUG_SERIAL
if (kinfo.do_serial_debug)
do_ser_debug();
#endif
}
arch_timer_int_handler();
return(1); /* reenable interrupts */
}
/*===========================================================================*
* get_realtime *
*===========================================================================*/
clock_t get_realtime(void)
{
/* Get and return the current wall time in ticks since boot. */
return(kclockinfo.realtime);
}
/*===========================================================================*
* set_realtime *
*===========================================================================*/
void set_realtime(clock_t newrealtime)
{
kclockinfo.realtime = newrealtime;
}
/*===========================================================================*
* set_adjtime_delta *
*===========================================================================*/
void set_adjtime_delta(int32_t ticks)
{
adjtime_delta = ticks;
}
/*===========================================================================*
* get_monotonic *
*===========================================================================*/
clock_t get_monotonic(void)
{
/* Get and return the number of ticks since boot. */
return(kclockinfo.uptime);
}
/*===========================================================================*
* set_boottime *
*===========================================================================*/
void set_boottime(time_t newboottime)
{
kclockinfo.boottime = newboottime;
}
/*===========================================================================*
* get_boottime *
*===========================================================================*/
time_t get_boottime(void)
{
/* Get and return the number of seconds since the UNIX epoch. */
return(kclockinfo.boottime);
}
/*===========================================================================*
* set_kernel_timer *
*===========================================================================*/
void set_kernel_timer(
minix_timer_t *tp, /* pointer to timer structure */
clock_t exp_time, /* expiration monotonic time */
tmr_func_t watchdog, /* watchdog to be called */
int arg /* argument for watchdog function */
)
{
/* Insert the new timer in the active timers list. Always update the
* next timeout time by setting it to the front of the active list.
*/
(void)tmrs_settimer(&clock_timers, tp, exp_time, watchdog, arg, NULL, NULL);
}
/*===========================================================================*
* reset_kernel_timer *
*===========================================================================*/
void reset_kernel_timer(
minix_timer_t *tp /* pointer to timer structure */
)
{
/* The timer pointed to by 'tp' is no longer needed. Remove it from both the
* active and expired lists. Always update the next timeout time by setting
* it to the front of the active list.
*/
if (tmr_is_set(tp))
(void)tmrs_clrtimer(&clock_timers, tp, NULL, NULL);
}
/*===========================================================================*
* load_update *
*===========================================================================*/
static void load_update(void)
{
u16_t slot;
int enqueued = 0, q;
struct proc *p;
struct proc **rdy_head;
/* Load average data is stored as a list of numbers in a circular
* buffer. Each slot accumulates _LOAD_UNIT_SECS of samples of
* the number of runnable processes. Computations can then
* be made of the load average over variable periods, in the
* user library (see getloadavg(3)).
*/
slot = (kclockinfo.uptime / system_hz / _LOAD_UNIT_SECS) %
_LOAD_HISTORY;
if(slot != kloadinfo.proc_last_slot) {
kloadinfo.proc_load_history[slot] = 0;
kloadinfo.proc_last_slot = slot;
}
rdy_head = get_cpulocal_var(run_q_head);
/* Cumulation. How many processes are ready now? */
for(q = 0; q < NR_SCHED_QUEUES; q++) {
for(p = rdy_head[q]; p != NULL; p = p->p_nextready) {
enqueued++;
}
}
kloadinfo.proc_load_history[slot] += enqueued;
/* Up-to-dateness. */
kloadinfo.last_clock = kclockinfo.uptime;
}
int boot_cpu_init_timer(unsigned freq)
{
if (init_local_timer(freq))
return -1;
if (register_local_timer_handler(
(irq_handler_t) timer_int_handler))
return -1;
return 0;
}
int app_cpu_init_timer(unsigned freq)
{
if (init_local_timer(freq))
return -1;
return 0;
}
|