1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
|
/* MIB service - proc.c - functionality based on service process tables */
/* Eventually, the CTL_PROC subtree might end up here as well. */
#include "mib.h"
#include <sys/exec.h>
#include <minix/sysinfo.h>
#include <machine/archtypes.h>
#include "kernel/proc.h"
#include "servers/pm/mproc.h"
#include "servers/vfs/const.h"
#include "servers/vfs/fproc.h"
typedef struct proc ixfer_proc_t;
typedef struct mproc ixfer_mproc_t;
static ixfer_proc_t proc_tab[NR_TASKS + NR_PROCS];
static ixfer_mproc_t mproc_tab[NR_PROCS];
static struct fproc_light fproc_tab[NR_PROCS];
/*
* The number of processes added to the current number of processes when doing
* a size estimation, so that the actual data retrieval does not end up with
* too little space if new processes have forked between the two calls. We do
* a process table update only once per clock tick, which means that typically
* no update will take place between the user process's size estimation request
* and its subsequent data retrieval request. On the other hand, if we do
* update process tables in between, quite a bit might have changed.
*/
#define EXTRA_PROCS 8
#define HASH_SLOTS (NR_PROCS / 4) /* expected nr. of processes in use */
#define NO_SLOT (-1)
static int hash_tab[HASH_SLOTS]; /* hash table mapping from PID.. */
static int hnext_tab[NR_PROCS]; /* ..to PM process slot */
static clock_t tabs_updated = 0; /* when the tables were last updated */
static int tabs_valid = TRUE; /* FALSE if obtaining tables failed */
/*
* Update the process tables by pulling in new copies from the kernel, PM, and
* VFS, but only every so often and only if it has not failed before. Return
* TRUE iff the tables are now valid.
*/
static int
update_tables(void)
{
clock_t now;
pid_t pid;
int r, kslot, mslot, hslot;
/*
* If retrieving the tables failed at some point, do not keep trying
* all the time. Such a failure is very unlikely to be transient.
*/
if (tabs_valid == FALSE)
return FALSE;
/*
* Update the tables once per clock tick at most. The update operation
* is rather heavy, transferring several hundreds of kilobytes between
* servers. Userland should be able to live with information that is
* outdated by at most one clock tick.
*/
now = getticks();
if (tabs_updated != 0 && tabs_updated == now)
return TRUE;
/* Perform an actual update now. */
tabs_valid = FALSE;
/* Retrieve and check the kernel process table. */
if ((r = sys_getproctab(proc_tab)) != OK) {
printf("MIB: unable to obtain kernel process table (%d)\n", r);
return FALSE;
}
for (kslot = 0; kslot < NR_TASKS + NR_PROCS; kslot++) {
if (proc_tab[kslot].p_magic != PMAGIC) {
printf("MIB: kernel process table mismatch\n");
return FALSE;
}
}
/* Retrieve and check the PM process table. */
r = getsysinfo(PM_PROC_NR, SI_PROC_TAB, mproc_tab, sizeof(mproc_tab));
if (r != OK) {
printf("MIB: unable to obtain PM process table (%d)\n", r);
return FALSE;
}
for (mslot = 0; mslot < NR_PROCS; mslot++) {
if (mproc_tab[mslot].mp_magic != MP_MAGIC) {
printf("MIB: PM process table mismatch\n");
return FALSE;
}
}
/* Retrieve an extract of the VFS process table. */
r = getsysinfo(VFS_PROC_NR, SI_PROCLIGHT_TAB, fproc_tab,
sizeof(fproc_tab));
if (r != OK) {
printf("MIB: unable to obtain VFS process table (%d)\n", r);
return FALSE;
}
tabs_valid = TRUE;
tabs_updated = now;
/*
* Build a hash table mapping from process IDs to slot numbers, for
* fast access. TODO: decide if this is better done on demand only.
*/
for (hslot = 0; hslot < HASH_SLOTS; hslot++)
hash_tab[hslot] = NO_SLOT;
for (mslot = 0; mslot < NR_PROCS; mslot++) {
if (mproc_tab[mslot].mp_flags & IN_USE) {
if ((pid = mproc_tab[mslot].mp_pid) <= 0)
continue;
hslot = mproc_tab[mslot].mp_pid % HASH_SLOTS;
hnext_tab[mslot] = hash_tab[hslot];
hash_tab[hslot] = mslot;
}
}
return TRUE;
}
/*
* Return the PM slot number for the given PID, or NO_SLOT if the PID is not in
* use by a process.
*/
static int
get_mslot(pid_t pid)
{
int mslot;
/* PID 0 identifies the kernel; checking this is up to the caller. */
if (pid <= 0)
return NO_SLOT;
for (mslot = hash_tab[pid % HASH_SLOTS]; mslot != NO_SLOT;
mslot = hnext_tab[mslot])
if (mproc_tab[mslot].mp_pid == pid)
break;
return mslot;
}
/*
* Store the given number of clock ticks as a timeval structure.
*/
static void
ticks_to_timeval(struct timeval * tv, clock_t ticks)
{
clock_t hz;
hz = sys_hz();
tv->tv_sec = ticks / hz;
tv->tv_usec = (long)((ticks % hz) * 1000000ULL / hz);
}
/*
* Generate a wchan message text for the cases that the process is blocked on
* IPC with another process, of which the endpoint is given as 'endpt' here.
* The name of the other process is to be stored in 'wmesg', which is a buffer
* of size 'wmsz'. The result should be null terminated. If 'ipc' is set, the
* process is blocked on a direct IPC call, in which case the name of the other
* process is enclosed in parentheses. If 'ipc' is not set, the call is made
* indirectly through VFS, and the name of the other process should not be
* enclosed in parentheses. If no name can be obtained, we use the endpoint of
* the other process instead.
*/
static void
fill_wmesg(char * wmesg, size_t wmsz, endpoint_t endpt, int ipc)
{
const char *name;
int mslot;
switch (endpt) {
case ANY:
name = "any";
break;
case SELF:
name = "self";
break;
case NONE:
name = "none";
break;
default:
mslot = _ENDPOINT_P(endpt);
if (mslot >= -NR_TASKS && mslot < NR_PROCS &&
(mslot < 0 || (mproc_tab[mslot].mp_flags & IN_USE)))
name = proc_tab[NR_TASKS + mslot].p_name;
else
name = NULL;
}
if (name != NULL)
snprintf(wmesg, wmsz, "%s%s%s",
ipc ? "(" : "", name, ipc ? ")" : "");
else
snprintf(wmesg, wmsz, "%s%d%s",
ipc ? "(" : "", endpt, ipc ? ")" : "");
}
/*
* Return the LWP status of a process, along with additional information in
* case the process is sleeping (LSSLEEP): a wchan value and text to indicate
* what the process is sleeping on, and possibly a flag field modification to
* indicate that the sleep is interruptible.
*/
static int
get_lwp_stat(int mslot, uint64_t * wcptr, char * wmptr, size_t wmsz,
int32_t * flag)
{
struct mproc *mp;
struct fproc_light *fp;
struct proc *kp;
const char *wmesg;
uint64_t wchan;
endpoint_t endpt;
mp = &mproc_tab[mslot];
fp = &fproc_tab[mslot];
kp = &proc_tab[NR_TASKS + mslot];
/*
* First cover all the cases that the process is not sleeping. In
* those cases, we need not return additional sleep information either.
*/
if (mp->mp_flags & (TRACE_ZOMBIE | ZOMBIE))
return LSZOMB;
if (mp->mp_flags & EXITING)
return LSDEAD;
if ((mp->mp_flags & TRACE_STOPPED) || RTS_ISSET(kp, RTS_P_STOP))
return LSSTOP;
if (proc_is_runnable(kp))
return LSRUN;
/*
* The process is sleeping. In that case, we must also figure out why,
* and return an appropriate wchan value and human-readable wmesg text.
*
* The process can be blocked on either a known sleep state in PM or
* VFS, or otherwise on IPC communication with another process, or
* otherwise on a kernel RTS flag. In each case, decide what to use as
* wchan value and wmesg text, and whether the sleep is interruptible.
*
* The wchan value should be unique for the sleep reason. We use its
* lower eight bits to indicate a class:
* 0x00 = kernel task
* 0x01 = kerel RTS block
* 0x02 = PM call
* 0x03 = VFS call
* 0x04 = MIB call
* 0xff = blocked on process
* The upper bits are used for class-specific information. The actual
* value does not really matter, as long as it is nonzero and there is
* no overlap between the different values.
*/
wchan = 0;
wmesg = NULL;
/*
* First see if the process is marked as blocked in the tables of PM or
* VFS. Such a block reason is always an interruptible sleep. Note
* that we do not use the kernel table at all in this case: each of the
* three tables is consistent within itself, but not necessarily
* consistent with any of the other tables, so we avoid internal
* mismatches if we can.
*/
if (mp->mp_flags & WAITING) {
wchan = 0x102;
wmesg = "wait";
} else if (mp->mp_flags & SIGSUSPENDED) {
wchan = 0x202;
wmesg = "pause";
} else if (fp->fpl_blocked_on != FP_BLOCKED_ON_NONE) {
wchan = (fp->fpl_blocked_on << 8) | 0x03;
switch (fp->fpl_blocked_on) {
case FP_BLOCKED_ON_PIPE:
wmesg = "pipe";
break;
case FP_BLOCKED_ON_FLOCK:
wmesg = "flock";
break;
case FP_BLOCKED_ON_POPEN:
wmesg = "popen";
break;
case FP_BLOCKED_ON_SELECT:
wmesg = "select";
break;
case FP_BLOCKED_ON_CDEV:
case FP_BLOCKED_ON_SDEV:
/*
* Add the task (= character or socket driver) endpoint
* to the wchan value, and use the driver's process
* name, without parentheses, as wmesg text.
*/
wchan |= (uint64_t)fp->fpl_task << 16;
fill_wmesg(wmptr, wmsz, fp->fpl_task, FALSE /*ipc*/);
break;
default:
/* A newly added flag we don't yet know about? */
wmesg = "???";
break;
}
}
if (wchan != 0) {
*wcptr = wchan;
if (wmesg != NULL) /* NULL means "already set" here */
strlcpy(wmptr, wmesg, wmsz);
*flag |= L_SINTR;
}
/*
* See if the process is blocked on sending or receiving. If not, then
* use one of the kernel RTS flags as reason.
*/
endpt = P_BLOCKEDON(kp);
switch (endpt) {
case MIB_PROC_NR:
/* This is really just aesthetics. */
wchan = 0x04;
wmesg = "sysctl";
break;
case NONE:
/*
* The process is not running, but also not blocked on IPC with
* another process. This means it must be stopped on a kernel
* RTS flag.
*/
wchan = ((uint64_t)kp->p_rts_flags << 8) | 0x01;
if (RTS_ISSET(kp, RTS_PROC_STOP))
wmesg = "kstop";
else if (RTS_ISSET(kp, RTS_SIGNALED) ||
RTS_ISSET(kp, RTS_SIGNALED))
wmesg = "ksignal";
else if (RTS_ISSET(kp, RTS_NO_PRIV))
wmesg = "knopriv";
else if (RTS_ISSET(kp, RTS_PAGEFAULT) ||
RTS_ISSET(kp, RTS_VMREQTARGET))
wmesg = "fault";
else if (RTS_ISSET(kp, RTS_NO_QUANTUM))
wmesg = "sched";
else
wmesg = "kflag";
break;
case ANY:
/*
* If the process is blocked receiving from ANY, mark it as
* being in an interruptible sleep. This looks nicer, even
* though "interruptible" is not applicable to services at all.
*/
*flag |= L_SINTR;
break;
}
/*
* If at this point wchan is still zero, the process is blocked sending
* or receiving. Use a wchan value based on the target endpoint, and
* use "(procname)" as wmesg text.
*/
if (wchan == 0) {
*wcptr = ((uint64_t)endpt << 8) | 0xff;
fill_wmesg(wmptr, wmsz, endpt, TRUE /*ipc*/);
} else {
*wcptr = wchan;
if (wmesg != NULL) /* NULL means "already set" here */
strlcpy(wmptr, wmesg, wmsz);
}
return LSSLEEP;
}
/*
* Fill the part of a LWP structure that is common between kernel tasks and
* user processes. Also return a CPU estimate in 'estcpu', because we generate
* the value as a side effect here, and the LWP structure has no estcpu field.
*/
static void
fill_lwp_common(struct kinfo_lwp * l, int kslot, uint32_t * estcpu)
{
struct proc *kp;
struct timeval tv;
clock_t uptime;
uint32_t hz;
kp = &proc_tab[kslot];
uptime = getticks();
hz = sys_hz();
/*
* We use the process endpoint as the LWP ID. Not only does this allow
* users to obtain process endpoints with "ps -s" (thus replacing the
* MINIX3 ps(1)'s "ps -E"), but if we ever do implement kernel threads,
* this is probably still going to be accurate.
*/
l->l_lid = kp->p_endpoint;
/*
* The time during which the process has not been swapped in or out is
* not applicable for us, and thus, we set it to the time the process
* has been running (in seconds). This value is relevant mostly for
* ps(1)'s CPU usage correction for processes that have just started.
*/
if (kslot >= NR_TASKS)
l->l_swtime = uptime - mproc_tab[kslot - NR_TASKS].mp_started;
else
l->l_swtime = uptime;
l->l_swtime /= hz;
/*
* Sleep (dequeue) times are not maintained for kernel tasks, so
* pretend they are never asleep (which is pretty accurate).
*/
if (kslot < NR_TASKS)
l->l_slptime = 0;
else
l->l_slptime = (uptime - kp->p_dequeued) / hz;
l->l_priority = kp->p_priority;
l->l_usrpri = kp->p_priority;
l->l_cpuid = kp->p_cpu;
ticks_to_timeval(&tv, kp->p_user_time + kp->p_sys_time);
l->l_rtime_sec = tv.tv_sec;
l->l_rtime_usec = tv.tv_usec;
/*
* Obtain CPU usage percentages and estimates through library code
* shared between the kernel and this service; see its source for
* details. We note that the produced estcpu value is rather different
* from the one produced by NetBSD, but this should not be a problem.
*/
l->l_pctcpu = cpuavg_getstats(&kp->p_cpuavg, &l->l_cpticks, estcpu,
uptime, hz);
}
/*
* Fill a LWP structure for a kernel task. Each kernel task has its own LWP,
* and all of them have negative PIDs.
*/
static void
fill_lwp_kern(struct kinfo_lwp * l, int kslot)
{
uint32_t estcpu;
memset(l, 0, sizeof(*l));
l->l_flag = L_INMEM | L_SINTR | L_SYSTEM;
l->l_stat = LSSLEEP;
l->l_pid = kslot - NR_TASKS;
/*
* When showing LWP entries, ps(1) uses the process name rather than
* the LWP name. All kernel tasks are therefore shown as "[kernel]"
* anyway. We use the wmesg field to show the actual kernel task name.
*/
l->l_wchan = ((uint64_t)(l->l_pid) << 8) | 0x00;
strlcpy(l->l_wmesg, proc_tab[kslot].p_name, sizeof(l->l_wmesg));
strlcpy(l->l_name, "kernel", sizeof(l->l_name));
fill_lwp_common(l, kslot, &estcpu);
}
/*
* Fill a LWP structure for a user process.
*/
static void
fill_lwp_user(struct kinfo_lwp * l, int mslot)
{
struct mproc *mp;
uint32_t estcpu;
memset(l, 0, sizeof(*l));
mp = &mproc_tab[mslot];
l->l_flag = L_INMEM;
l->l_stat = get_lwp_stat(mslot, &l->l_wchan, l->l_wmesg,
sizeof(l->l_wmesg), &l->l_flag);
l->l_pid = mp->mp_pid;
strlcpy(l->l_name, mp->mp_name, sizeof(l->l_name));
fill_lwp_common(l, NR_TASKS + mslot, &estcpu);
}
/*
* Implementation of CTL_KERN KERN_LWP.
*/
ssize_t
mib_kern_lwp(struct mib_call * call, struct mib_node * node __unused,
struct mib_oldp * oldp, struct mib_newp * newp __unused)
{
struct kinfo_lwp lwp;
struct mproc *mp;
size_t copysz;
ssize_t off;
pid_t pid;
int r, elsz, elmax, kslot, mslot, last_mslot;
if (call->call_namelen != 3)
return EINVAL;
pid = (pid_t)call->call_name[0];
elsz = call->call_name[1];
elmax = call->call_name[2]; /* redundant with the given oldlen.. */
if (pid < -1 || elsz <= 0 || elmax < 0)
return EINVAL;
if (!update_tables())
return EINVAL;
off = 0;
copysz = MIN((size_t)elsz, sizeof(lwp));
/*
* We model kernel tasks as LWP threads of the kernel (with PID 0).
* Modeling the kernel tasks as processes with negative PIDs, like
* ProcFS does, conflicts with the KERN_LWP API here: a PID of -1
* indicates that the caller wants a full listing of LWPs.
*/
if (pid <= 0) {
for (kslot = 0; kslot < NR_TASKS; kslot++) {
if (mib_inrange(oldp, off) && elmax > 0) {
fill_lwp_kern(&lwp, kslot);
if ((r = mib_copyout(oldp, off, &lwp,
copysz)) < 0)
return r;
elmax--;
}
off += elsz;
}
/* No need to add extra space here: NR_TASKS is static. */
if (pid == 0)
return off;
}
/*
* With PID 0 out of the way: the user requested the LWP for either a
* specific user process (pid > 0), or for all processes (pid < 0).
*/
if (pid > 0) {
if ((mslot = get_mslot(pid)) == NO_SLOT ||
(mproc_tab[mslot].mp_flags & (TRACE_ZOMBIE | ZOMBIE)))
return ESRCH;
last_mslot = mslot;
} else {
mslot = 0;
last_mslot = NR_PROCS - 1;
}
for (; mslot <= last_mslot; mslot++) {
mp = &mproc_tab[mslot];
if ((mp->mp_flags & (IN_USE | TRACE_ZOMBIE | ZOMBIE)) !=
IN_USE)
continue;
if (mib_inrange(oldp, off) && elmax > 0) {
fill_lwp_user(&lwp, mslot);
if ((r = mib_copyout(oldp, off, &lwp, copysz)) < 0)
return r;
elmax--;
}
off += elsz;
}
if (oldp == NULL && pid < 0)
off += EXTRA_PROCS * elsz;
return off;
}
/*
* Fill the part of a process structure that is common between kernel tasks and
* user processes.
*/
static void
fill_proc2_common(struct kinfo_proc2 * p, int kslot)
{
struct vm_usage_info vui;
struct timeval tv;
struct proc *kp;
struct kinfo_lwp l;
kp = &proc_tab[kslot];
/*
* Much of the information in the LWP structure also ends up in the
* process structure. In order to avoid duplication of some important
* code, first generate LWP values and then copy it them into the
* process structure.
*/
memset(&l, 0, sizeof(l));
fill_lwp_common(&l, kslot, &p->p_estcpu);
/* Obtain memory usage information from VM. Ignore failures. */
memset(&vui, 0, sizeof(vui));
(void)vm_info_usage(kp->p_endpoint, &vui);
ticks_to_timeval(&tv, kp->p_user_time + kp->p_sys_time);
p->p_rtime_sec = l.l_rtime_sec;
p->p_rtime_usec = l.l_rtime_usec;
p->p_cpticks = l.l_cpticks;
p->p_pctcpu = l.l_pctcpu;
p->p_swtime = l.l_swtime;
p->p_slptime = l.l_slptime;
p->p_uticks = kp->p_user_time;
p->p_sticks = kp->p_sys_time;
/* TODO: p->p_iticks */
ticks_to_timeval(&tv, kp->p_user_time);
p->p_uutime_sec = tv.tv_sec;
p->p_uutime_usec = tv.tv_usec;
ticks_to_timeval(&tv, kp->p_sys_time);
p->p_ustime_sec = tv.tv_sec;
p->p_ustime_usec = tv.tv_usec;
p->p_priority = l.l_priority;
p->p_usrpri = l.l_usrpri;
p->p_vm_rssize = howmany(vui.vui_total, PAGE_SIZE);
p->p_vm_vsize = howmany(vui.vui_virtual, PAGE_SIZE);
p->p_vm_msize = howmany(vui.vui_mvirtual, PAGE_SIZE);
p->p_uru_maxrss = vui.vui_maxrss;
p->p_uru_minflt = vui.vui_minflt;
p->p_uru_majflt = vui.vui_majflt;
p->p_cpuid = l.l_cpuid;
}
/*
* Fill a process structure for the kernel pseudo-process (with PID 0).
*/
static void
fill_proc2_kern(struct kinfo_proc2 * p)
{
memset(p, 0, sizeof(*p));
p->p_flag = L_INMEM | L_SYSTEM | L_SINTR;
p->p_pid = 0;
p->p_stat = LSSLEEP;
p->p_nice = NZERO;
/* Use the KERNEL task wchan, for consistency between ps and top. */
p->p_wchan = ((uint64_t)KERNEL << 8) | 0x00;
strlcpy(p->p_wmesg, "kernel", sizeof(p->p_wmesg));
strlcpy(p->p_comm, "kernel", sizeof(p->p_comm));
p->p_realflag = P_INMEM | P_SYSTEM | P_SINTR;
p->p_realstat = SACTIVE;
p->p_nlwps = NR_TASKS;
/*
* By using the KERNEL slot here, the kernel process will get a proper
* CPU usage average.
*/
fill_proc2_common(p, KERNEL + NR_TASKS);
}
/*
* Fill a process structure for a user process.
*/
static void
fill_proc2_user(struct kinfo_proc2 * p, int mslot)
{
struct mproc *mp;
struct fproc_light *fp;
time_t boottime;
dev_t tty;
struct timeval tv;
int i, r, kslot, zombie;
memset(p, 0, sizeof(*p));
if ((r = getuptime(NULL, NULL, &boottime)) != OK)
panic("getuptime failed: %d", r);
kslot = NR_TASKS + mslot;
mp = &mproc_tab[mslot];
fp = &fproc_tab[mslot];
zombie = (mp->mp_flags & (TRACE_ZOMBIE | ZOMBIE));
tty = (!zombie) ? fp->fpl_tty : NO_DEV;
p->p_eflag = 0;
if (tty != NO_DEV)
p->p_eflag |= EPROC_CTTY;
if (mp->mp_pid == mp->mp_procgrp) /* TODO: job control support */
p->p_eflag |= EPROC_SLEADER;
p->p_exitsig = SIGCHLD; /* TODO */
p->p_flag = P_INMEM;
if (mp->mp_flags & TAINTED)
p->p_flag |= P_SUGID;
if (mp->mp_tracer != NO_TRACER)
p->p_flag |= P_TRACED;
if (tty != NO_DEV)
p->p_flag |= P_CONTROLT;
p->p_pid = mp->mp_pid;
if (mp->mp_parent >= 0 && mp->mp_parent < NR_PROCS)
p->p_ppid = mproc_tab[mp->mp_parent].mp_pid;
p->p_sid = mp->mp_procgrp; /* TODO: job control supported */
p->p__pgid = mp->mp_procgrp;
p->p_tpgid = (tty != NO_DEV) ? mp->mp_procgrp : 0;
p->p_uid = mp->mp_effuid;
p->p_ruid = mp->mp_realuid;
p->p_gid = mp->mp_effgid;
p->p_rgid = mp->mp_realgid;
p->p_ngroups = MIN(mp->mp_ngroups, KI_NGROUPS);
for (i = 0; i < p->p_ngroups; i++)
p->p_groups[i] = mp->mp_sgroups[i];
p->p_tdev = tty;
memcpy(&p->p_siglist, &mp->mp_sigpending, sizeof(p->p_siglist));
memcpy(&p->p_sigmask, &mp->mp_sigmask, sizeof(p->p_sigmask));
memcpy(&p->p_sigcatch, &mp->mp_catch, sizeof(p->p_sigcatch));
memcpy(&p->p_sigignore, &mp->mp_ignore, sizeof(p->p_sigignore));
p->p_nice = mp->mp_nice + NZERO;
strlcpy(p->p_comm, mp->mp_name, sizeof(p->p_comm));
p->p_uvalid = 1;
ticks_to_timeval(&tv, mp->mp_started);
p->p_ustart_sec = boottime + tv.tv_sec;
p->p_ustart_usec = tv.tv_usec;
/* TODO: other rusage fields */
ticks_to_timeval(&tv, mp->mp_child_utime + mp->mp_child_stime);
p->p_uctime_sec = tv.tv_sec;
p->p_uctime_usec = tv.tv_usec;
p->p_realflag = p->p_flag;
p->p_nlwps = (zombie) ? 0 : 1;
p->p_svuid = mp->mp_svuid;
p->p_svgid = mp->mp_svgid;
p->p_stat = get_lwp_stat(mslot, &p->p_wchan, p->p_wmesg,
sizeof(p->p_wmesg), &p->p_flag);
switch (p->p_stat) {
case LSRUN:
p->p_realstat = SACTIVE;
p->p_nrlwps = 1;
break;
case LSSLEEP:
p->p_realstat = SACTIVE;
if (p->p_flag & L_SINTR)
p->p_realflag |= P_SINTR;
break;
case LSSTOP:
p->p_realstat = SSTOP;
break;
case LSZOMB:
p->p_realstat = SZOMB;
break;
case LSDEAD:
p->p_stat = LSZOMB; /* ps(1) STAT does not know LSDEAD */
p->p_realstat = SDEAD;
break;
default:
assert(0);
}
if (!zombie)
fill_proc2_common(p, kslot);
}
/*
* Implementation of CTL_KERN KERN_PROC2.
*/
ssize_t
mib_kern_proc2(struct mib_call * call, struct mib_node * node __unused,
struct mib_oldp * oldp, struct mib_newp * newp __unused)
{
struct kinfo_proc2 proc2;
struct mproc *mp;
size_t copysz;
ssize_t off;
dev_t tty;
int r, req, arg, elsz, elmax, kmatch, zombie, mslot;
if (call->call_namelen != 4)
return EINVAL;
req = call->call_name[0];
arg = call->call_name[1];
elsz = call->call_name[2];
elmax = call->call_name[3]; /* redundant with the given oldlen.. */
/*
* The kernel is special, in that it does not have a slot in the PM or
* VFS tables. As such, it is dealt with separately. While checking
* arguments, we might as well check whether the kernel is matched.
*/
switch (req) {
case KERN_PROC_ALL:
kmatch = TRUE;
break;
case KERN_PROC_PID:
case KERN_PROC_SESSION:
case KERN_PROC_PGRP:
case KERN_PROC_UID:
case KERN_PROC_RUID:
case KERN_PROC_GID:
case KERN_PROC_RGID:
kmatch = (arg == 0);
break;
case KERN_PROC_TTY:
kmatch = ((dev_t)arg == KERN_PROC_TTY_NODEV);
break;
default:
return EINVAL;
}
if (elsz <= 0 || elmax < 0)
return EINVAL;
if (!update_tables())
return EINVAL;
off = 0;
copysz = MIN((size_t)elsz, sizeof(proc2));
if (kmatch) {
if (mib_inrange(oldp, off) && elmax > 0) {
fill_proc2_kern(&proc2);
if ((r = mib_copyout(oldp, off, &proc2, copysz)) < 0)
return r;
elmax--;
}
off += elsz;
}
for (mslot = 0; mslot < NR_PROCS; mslot++) {
mp = &mproc_tab[mslot];
if (!(mp->mp_flags & IN_USE))
continue;
switch (req) {
case KERN_PROC_PID:
if ((pid_t)arg != mp->mp_pid)
continue;
break;
case KERN_PROC_SESSION: /* TODO: job control support */
case KERN_PROC_PGRP:
if ((pid_t)arg != mp->mp_procgrp)
continue;
break;
case KERN_PROC_TTY:
if ((dev_t)arg == KERN_PROC_TTY_REVOKE)
continue; /* TODO: revoke(2) support */
/* Do not access the fproc_tab slot of zombies. */
zombie = (mp->mp_flags & (TRACE_ZOMBIE | ZOMBIE));
tty = (zombie) ? fproc_tab[mslot].fpl_tty : NO_DEV;
if ((dev_t)arg == KERN_PROC_TTY_NODEV) {
if (tty != NO_DEV)
continue;
} else if ((dev_t)arg == NO_DEV || (dev_t)arg != tty)
continue;
break;
case KERN_PROC_UID:
if ((uid_t)arg != mp->mp_effuid)
continue;
break;
case KERN_PROC_RUID:
if ((uid_t)arg != mp->mp_realuid)
continue;
break;
case KERN_PROC_GID:
if ((gid_t)arg != mp->mp_effgid)
continue;
break;
case KERN_PROC_RGID:
if ((gid_t)arg != mp->mp_realgid)
continue;
break;
}
if (mib_inrange(oldp, off) && elmax > 0) {
fill_proc2_user(&proc2, mslot);
if ((r = mib_copyout(oldp, off, &proc2, copysz)) < 0)
return r;
elmax--;
}
off += elsz;
}
if (oldp == NULL && req != KERN_PROC_PID)
off += EXTRA_PROCS * elsz;
return off;
}
/*
* Implementation of CTL_KERN KERN_PROC_ARGS.
*/
ssize_t
mib_kern_proc_args(struct mib_call * call, struct mib_node * node __unused,
struct mib_oldp * oldp, struct mib_newp * newp __unused)
{
char vbuf[PAGE_SIZE], sbuf[PAGE_SIZE], obuf[PAGE_SIZE];
struct ps_strings pss;
struct mproc *mp;
char *buf, *p, *q, *pptr;
vir_bytes vaddr, vpage, spage, paddr, ppage;
size_t max, off, olen, oleft, oldlen, bytes, pleft;
unsigned int copybudget;
pid_t pid;
int req, mslot, count, aborted, ended;
ssize_t r;
if (call->call_namelen != 2)
return EINVAL;
pid = call->call_name[0];
req = call->call_name[1];
switch (req) {
case KERN_PROC_ARGV:
case KERN_PROC_ENV:
case KERN_PROC_NARGV:
case KERN_PROC_NENV:
break;
default:
return EOPNOTSUPP;
}
if (!update_tables())
return EINVAL;
if ((mslot = get_mslot(pid)) == NO_SLOT)
return ESRCH;
mp = &mproc_tab[mslot];
if (mp->mp_flags & (TRACE_ZOMBIE | ZOMBIE))
return ESRCH;
/* We can return the count field size without copying in any data. */
if (oldp == NULL && (req == KERN_PROC_NARGV || req == KERN_PROC_NENV))
return sizeof(count);
if (sys_datacopy(mp->mp_endpoint,
mp->mp_frame_addr + mp->mp_frame_len - sizeof(pss),
SELF, (vir_bytes)&pss, sizeof(pss)) != OK)
return EINVAL;
/*
* Determine the upper size limit of the requested data. Not only may
* the size never exceed ARG_MAX, it may also not exceed the frame
* length as given in its original exec call. In fact, the frame
* length should be substantially larger: all strings for both the
* arguments and the environment are in there, along with other stuff,
* and there must be no overlap between strings. It is possible that
* the application called setproctitle(3), in which case the ps_strings
* pointers refer to data outside the frame altogether. However, this
* data should not exceed 2048 bytes, and we cover this by rounding up
* the frame length to a multiple of the page size. Anyhow, NetBSD
* blindly returns ARG_MAX when asked for a size estimate, so with this
* maximum we are already quite a bit more accurate.
*/
max = roundup(MIN(mp->mp_frame_len, ARG_MAX), PAGE_SIZE);
switch (req) {
case KERN_PROC_NARGV:
count = pss.ps_nargvstr;
return mib_copyout(oldp, 0, &count, sizeof(count));
case KERN_PROC_NENV:
count = pss.ps_nenvstr;
return mib_copyout(oldp, 0, &count, sizeof(count));
case KERN_PROC_ARGV:
if (oldp == NULL)
return max;
vaddr = (vir_bytes)pss.ps_argvstr;
count = pss.ps_nargvstr;
break;
case KERN_PROC_ENV:
if (oldp == NULL)
return max;
vaddr = (vir_bytes)pss.ps_envstr;
count = pss.ps_nenvstr;
break;
}
/*
* Go through the strings. Copy in entire, machine-aligned pages at
* once, in the hope that all data is stored consecutively, which it
* should be: we expect that the vector is followed by the strings, and
* that the strings are stored in order of vector reference. We keep
* up to two pages with copied-in data: one for the vector, and
* optionally one for string data. In addition, we keep one page with
* data to be copied out, so that we do not cause a lot of copy
* overhead for short strings.
*
* We stop whenever any of the following conditions are met:
* - copying in data from the target process fails for any reason;
* - we have processed the last index ('count') into the vector;
* - the current vector element is a NULL pointer;
* - the requested number of output bytes ('oldlen') has been reached;
* - the maximum number of output bytes ('max') has been reached;
* - the number of page copy-ins exceeds an estimated threshold;
* - copying out data fails for any reason (we then return the error).
*
* We limit the number of page copy-ins because otherwise a rogue
* process could create an argument vector consisting of only two-byte
* strings that all span two pages, causing us to copy up to 1GB of
* data with the current ARG_MAX value of 256K. No reasonable vector
* should cause more than (ARG_MAX / PAGE_SIZE) page copies for
* strings; we are nice enough to allow twice that. Vector copies do
* not count, as they are linear anyway.
*
* Unlike every other sysctl(2) call, we are supposed to truncate the
* resulting size (the returned 'oldlen') to the requested size (the
* given 'oldlen') *and* return the resulting size, rather than ENOMEM
* and the real size. Unfortunately, libkvm actually relies on this.
*
* Generally speaking, upon failure we just return a truncated result.
* In case of truncation, the data we copy out need not be null
* terminated. It is up to userland to process the data correctly.
*/
if (trunc_page(vaddr) == 0 || vaddr % sizeof(char *) != 0)
return 0;
off = 0;
olen = 0;
aborted = FALSE;
oldlen = mib_getoldlen(oldp);
if (oldlen > max)
oldlen = max;
copybudget = (ARG_MAX / PAGE_SIZE) * 2;
vpage = 0;
spage = 0;
while (count > 0 && off + olen < oldlen && !aborted) {
/*
* Start by fetching the page containing the current vector
* element, if needed. We could limit the fetch to the vector
* size, but our hope is that for the simple cases, the strings
* are on the remainder of the same page, so we save a copy
* call. TODO: since the strings should follow the vector, we
* could start the copy at the base of the vector.
*/
if (trunc_page(vaddr) != vpage) {
vpage = trunc_page(vaddr);
if (sys_datacopy(mp->mp_endpoint, vpage, SELF,
(vir_bytes)vbuf, PAGE_SIZE) != OK)
break;
}
/* Get the current vector element, pointing to a string. */
memcpy(&pptr, &vbuf[vaddr - vpage], sizeof(pptr));
paddr = (vir_bytes)pptr;
ppage = trunc_page(paddr);
if (ppage == 0)
break;
/* Fetch the string itself, one page at a time at most. */
do {
/*
* See if the string pointer falls inside either the
* vector page or the previously fetched string page
* (if any). If not, fetch a string page.
*/
if (ppage == vpage) {
buf = vbuf;
} else if (ppage == spage) {
buf = sbuf;
} else {
if (--copybudget == 0) {
aborted = TRUE;
break;
}
spage = ppage;
if (sys_datacopy(mp->mp_endpoint, spage, SELF,
(vir_bytes)sbuf, PAGE_SIZE) != OK) {
aborted = TRUE;
break;
}
buf = sbuf;
}
/*
* We now have a string fragment in a buffer. See if
* the string is null terminated. If not, all the data
* up to the buffer end is part of the string, and the
* string continues on the next page.
*/
p = &buf[paddr - ppage];
pleft = PAGE_SIZE - (paddr - ppage);
assert(pleft > 0);
if ((q = memchr(p, '\0', pleft)) != NULL) {
bytes = (size_t)(q - p + 1);
assert(bytes <= pleft);
ended = TRUE;
} else {
bytes = pleft;
ended = FALSE;
}
/* Limit the result to the requested length. */
if (off + olen + bytes > oldlen)
bytes = oldlen - off - olen;
/*
* Add 'bytes' bytes from string pointer 'p' to the
* output buffer, copying out its contents to userland
* if it has filled up.
*/
if (olen + bytes > sizeof(obuf)) {
oleft = sizeof(obuf) - olen;
memcpy(&obuf[olen], p, oleft);
if ((r = mib_copyout(oldp, off, obuf,
sizeof(obuf))) < 0)
return r;
off += sizeof(obuf);
olen = 0;
p += oleft;
bytes -= oleft;
}
if (bytes > 0) {
memcpy(&obuf[olen], p, bytes);
olen += bytes;
}
/*
* Continue as long as we have not yet found the string
* end, and we have not yet filled the output buffer.
*/
paddr += pleft;
assert(trunc_page(paddr) == paddr);
ppage = paddr;
} while (!ended && off + olen < oldlen);
vaddr += sizeof(char *);
count--;
}
/* Copy out any remainder of the output buffer. */
if (olen > 0) {
if ((r = mib_copyout(oldp, off, obuf, olen)) < 0)
return r;
off += olen;
}
assert(off <= oldlen);
return off;
}
/*
* Implementation of CTL_MINIX MINIX_PROC PROC_LIST.
*/
ssize_t
mib_minix_proc_list(struct mib_call * call __unused,
struct mib_node * node __unused, struct mib_oldp * oldp,
struct mib_newp * newp __unused)
{
struct minix_proc_list mpl[NR_PROCS];
struct minix_proc_list *mplp;
struct mproc *mp;
unsigned int mslot;
if (oldp == NULL)
return sizeof(mpl);
if (!update_tables())
return EINVAL;
memset(&mpl, 0, sizeof(mpl));
mplp = mpl;
mp = mproc_tab;
for (mslot = 0; mslot < NR_PROCS; mslot++, mplp++, mp++) {
if (!(mp->mp_flags & IN_USE) || mp->mp_pid <= 0)
continue;
mplp->mpl_flags = MPLF_IN_USE;
if (mp->mp_flags & (TRACE_ZOMBIE | ZOMBIE))
mplp->mpl_flags |= MPLF_ZOMBIE;
mplp->mpl_pid = mp->mp_pid;
mplp->mpl_uid = mp->mp_effuid;
mplp->mpl_gid = mp->mp_effgid;
}
return mib_copyout(oldp, 0, &mpl, sizeof(mpl));
}
/*
* Implementation of CTL_MINIX MINIX_PROC PROC_DATA.
*/
ssize_t
mib_minix_proc_data(struct mib_call * call, struct mib_node * node __unused,
struct mib_oldp * oldp, struct mib_newp * newp __unused)
{
struct minix_proc_data mpd;
struct proc *kp;
int kslot, mslot = 0;
unsigned int mflags;
pid_t pid;
/*
* It is currently only possible to retrieve the process data for a
* particular PID, which must be given as the last name component.
*/
if (call->call_namelen != 1)
return EINVAL;
pid = (pid_t)call->call_name[0];
if (!update_tables())
return EINVAL;
/*
* Unlike the CTL_KERN nodes, we use the ProcFS semantics here: if the
* given PID is negative, it is a kernel task; otherwise, it identifies
* a user process. A request for PID 0 will result in ESRCH.
*/
if (pid < 0) {
if (pid < -NR_TASKS)
return ESRCH;
kslot = pid + NR_TASKS;
assert(kslot < NR_TASKS);
} else {
if ((mslot = get_mslot(pid)) == NO_SLOT)
return ESRCH;
kslot = NR_TASKS + mslot;
}
if (oldp == NULL)
return sizeof(mpd);
kp = &proc_tab[kslot];
mflags = (pid > 0) ? mproc_tab[mslot].mp_flags : 0;
memset(&mpd, 0, sizeof(mpd));
mpd.mpd_endpoint = kp->p_endpoint;
if (mflags & PRIV_PROC)
mpd.mpd_flags |= MPDF_SYSTEM;
if (mflags & (TRACE_ZOMBIE | ZOMBIE))
mpd.mpd_flags |= MPDF_ZOMBIE;
else if ((mflags & TRACE_STOPPED) || RTS_ISSET(kp, RTS_P_STOP))
mpd.mpd_flags |= MPDF_STOPPED;
else if (proc_is_runnable(kp))
mpd.mpd_flags |= MPDF_RUNNABLE;
mpd.mpd_blocked_on = P_BLOCKEDON(kp);
mpd.mpd_priority = kp->p_priority;
mpd.mpd_user_time = kp->p_user_time;
mpd.mpd_sys_time = kp->p_sys_time;
mpd.mpd_cycles = kp->p_cycles;
mpd.mpd_kipc_cycles = kp->p_kipc_cycles;
mpd.mpd_kcall_cycles = kp->p_kcall_cycles;
if (kslot >= NR_TASKS) {
mpd.mpd_nice = mproc_tab[mslot].mp_nice;
strlcpy(mpd.mpd_name, mproc_tab[mslot].mp_name,
sizeof(mpd.mpd_name));
} else
strlcpy(mpd.mpd_name, kp->p_name, sizeof(mpd.mpd_name));
return mib_copyout(oldp, 0, &mpd, sizeof(mpd));
}
|