summaryrefslogtreecommitdiff
path: root/source/common/drc_core.c
blob: 93d939daf5b1931b0d4f3f51aca6e9411f898cef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
/*
 * V810 dynamic recompiler for ARM
 *
 * This file is distributed under the MIT License. However, some of the code
 * (the V810 instruction decoding) is based on Reality Boy's interpreter and
 * was written by David Tucker. For more information on the original license,
 * check the README.
 * 
 * Copyright (c) 2015 danielps
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>

#ifdef _3DS
#include <3ds.h>
#endif

#include "utils.h"
#include "drc_core.h"
#include "v810_cpu.h"
#include "v810_mem.h"
#include "v810_opt.h"
#include "vb_set.h"
#include "vb_gui.h"
#include "vb_types.h"

#include "arm_emit.h"
#include "arm_codegen.h"

WORD* cache_start;
WORD* cache_pos;
int block_pos = 0;

// Maps the most used registers in the block to V810 registers
void drc_mapRegs(exec_block* block) {
    int i, j, max;

    for (i = 0; i < ARM_NUM_CACHE_REGS; i++) {
        max = 0;
        // We don't care about P_REG[0] because it will always be 0 and it will
        // be optimized out
        for (j = 1; j < 32; j++) {
            if (reg_usage[j] > max) {
                max = reg_usage[j];
                block->reg_map[i] = (BYTE) j;
            }
        }
        if (max)
            reg_usage[block->reg_map[i]] = 0;
        else
            // Use the "33rd register" as a placeholder if the register isn't
            // used in the block
            block->reg_map[i] = 32;
    }
}

// Gets the ARM register corresponding to a cached V810 register
BYTE drc_getPhysReg(BYTE vb_reg, BYTE reg_map[]) {
    int i;
    for (i = 0; i < ARM_NUM_CACHE_REGS; i++) {
        if (reg_map[i] == vb_reg) {
            // The first usable register will be r4
            return (BYTE) (i + ARM_CACHE_REG_START);
        }
    }
    return 0;
}

// Finds the starting and ending address of a V810 code block. It stops after a
// jmp, jal, reti or a long jr unless it branches further.
void drc_scanBlockBounds(WORD* p_start_PC, WORD* p_end_PC) {
    WORD start_PC = *p_start_PC & V810_ROM1.highaddr;
    WORD end_PC = start_PC;
    WORD cur_PC = start_PC;
    WORD branch_addr;
    int branch_offset;
    BYTE opcode;
    bool finished = false;
    BYTE lowB, highB, lowB2, highB2;

    while(!finished) {
        // TODO: implement reading from RAM
        if ((cur_PC >>24) == 0x05) { // RAM
            cur_PC = (cur_PC & V810_VB_RAM.highaddr);
            lowB   = ((BYTE *)(V810_VB_RAM.off + cur_PC))[0];
            highB  = ((BYTE *)(V810_VB_RAM.off + cur_PC))[1];
            lowB2  = ((BYTE *)(V810_VB_RAM.off + cur_PC))[2];
            highB2 = ((BYTE *)(V810_VB_RAM.off + cur_PC))[3];
        } else if ((cur_PC >>24) >= 0x07) { // ROM
            cur_PC = (cur_PC & V810_ROM1.highaddr);
            lowB   = ((BYTE *)(V810_ROM1.off + cur_PC))[0];
            highB  = ((BYTE *)(V810_ROM1.off + cur_PC))[1];
            lowB2  = ((BYTE *)(V810_ROM1.off + cur_PC))[2];
            highB2 = ((BYTE *)(V810_ROM1.off + cur_PC))[3];
        } else {
            return;
        }
        if ((highB & 0xE0) == 0x80)
            opcode = highB>>1;
        else
            opcode = highB>>2;

        switch (opcode) {
            case V810_OP_JR:
                branch_offset = (signed)sign_26(((highB & 0x3) << 24) + (lowB << 16) + (highB2 << 8) + lowB2);
                if (abs(branch_offset) < 1024) {
                    branch_addr = cur_PC + branch_offset;
                    if (branch_addr < start_PC)
                        start_PC = branch_addr;
                    else if (branch_addr > end_PC)
                        end_PC = branch_addr;
                    break;
                }
            case V810_OP_JMP:
            case V810_OP_JAL:
            case V810_OP_RETI:
                if (cur_PC >= end_PC) {
                    end_PC = cur_PC;
                    finished = true;
                }
                break;
            case V810_OP_BV:
            case V810_OP_BL:
            case V810_OP_BE:
            case V810_OP_BNH:
            case V810_OP_BN:
            case V810_OP_BR:
            case V810_OP_BLT:
            case V810_OP_BLE:
            case V810_OP_BNV:
            case V810_OP_BNL:
            case V810_OP_BNE:
            case V810_OP_BH:
            case V810_OP_BP:
            case V810_OP_BGE:
            case V810_OP_BGT:
                branch_addr = cur_PC + sign_9(((highB & 0x1) << 8) + (lowB & 0xFE));

                if (branch_addr < start_PC)
                    start_PC = branch_addr;
                else if (branch_addr > end_PC)
                    end_PC = branch_addr;
                break;
        }

        cur_PC += am_size_table[optable[opcode].addr_mode];

        if (cur_PC > end_PC)
            end_PC = cur_PC;
    }

    *p_start_PC = start_PC;
    *p_end_PC = end_PC;
}

// Workaround for an issue where the CPSR is modified outside of the block
// before a conditional branch.
// Sets save_flags for all unconditional instructions prior to a branch.
void drc_findLastConditionalInst(v810_instruction *inst_cache, int pos) {
    int i;
    for (i = pos - 1; i >= 0; i--) {
        switch (inst_cache[i].opcode) {
            case V810_OP_LD_B:
            case V810_OP_LD_H:
            case V810_OP_LD_W:
            case V810_OP_IN_B:
            case V810_OP_IN_H:
            case V810_OP_IN_W:
            case V810_OP_ST_B:
            case V810_OP_ST_H:
            case V810_OP_ST_W:
            case V810_OP_OUT_B:
            case V810_OP_OUT_H:
            case V810_OP_OUT_W:
                inst_cache[i].save_flags = true;
                break;
            default:
                return;
        }
    }
}

// Decodes the instructions from start_PC to end_PC and stores them in
// inst_cache.
// Returns the number of instructions decoded.
unsigned int drc_decodeInstructions(exec_block *block, v810_instruction *inst_cache, WORD start_PC, WORD end_PC) {
    unsigned int i;
    // Up to 4 bytes for instruction (either 16 or 32 bits)
    BYTE lowB, highB, lowB2, highB2;
    WORD cur_PC = start_PC;

    for (i = 0; (i < MAX_INST) && (cur_PC < end_PC); i++) {
        cur_PC = (cur_PC &0x07FFFFFE);

        if ((cur_PC >>24) == 0x05) { // RAM
            cur_PC = (cur_PC & V810_VB_RAM.highaddr);
            lowB   = ((BYTE *)(V810_VB_RAM.off + cur_PC))[0];
            highB  = ((BYTE *)(V810_VB_RAM.off + cur_PC))[1];
            lowB2  = ((BYTE *)(V810_VB_RAM.off + cur_PC))[2];
            highB2 = ((BYTE *)(V810_VB_RAM.off + cur_PC))[3];
        } else if ((cur_PC >>24) >= 0x07) { // ROM
            cur_PC = (cur_PC & V810_ROM1.highaddr);
            lowB   = ((BYTE *)(V810_ROM1.off + cur_PC))[0];
            highB  = ((BYTE *)(V810_ROM1.off + cur_PC))[1];
            lowB2  = ((BYTE *)(V810_ROM1.off + cur_PC))[2];
            highB2 = ((BYTE *)(V810_ROM1.off + cur_PC))[3];
        } else {
            return 0;
        }

        inst_cache[i].PC = cur_PC;
        inst_cache[i].save_flags = false;

        inst_cache[i].opcode = highB >> 2;
        if ((highB & 0xE0) == 0x80)              // Special opcode format for
            inst_cache[i].opcode = (highB >> 1); // type III instructions.

        if ((inst_cache[i].opcode > 0x4F) || (inst_cache[i].opcode < 0))
            return 0;

        switch (optable[inst_cache[i].opcode].addr_mode) {
            case AM_I:
                inst_cache[i].reg1 = (BYTE)((lowB & 0x1F));
                reg_usage[inst_cache[i].reg1]++;

                // jmp [reg1] doesn't use the second register
                if (inst_cache[i].opcode != V810_OP_JMP) {
                    inst_cache[i].reg2 = (BYTE)((lowB >> 5) + ((highB & 0x3) << 3));
                    reg_usage[inst_cache[i].reg2]++;
                } else {
                    inst_cache[i].reg2 = 0xFF;
                }
                break;
            case AM_II:
                inst_cache[i].imm = (unsigned)((lowB & 0x1F));
                inst_cache[i].reg2 = (BYTE)((lowB >> 5) + ((highB & 0x3) << 3));
                reg_usage[inst_cache[i].reg2]++;

                inst_cache[i].reg1 = 0xFF;
                break;
            case AM_III: // Branch instructions
                inst_cache[i].imm = (unsigned)(((highB & 0x1) << 8) + (lowB & 0xFE));
                inst_cache[i].branch_offset = sign_9(inst_cache[i].imm);

                inst_cache[i].reg1 = 0xFF;
                inst_cache[i].reg2 = 0xFF;

                if (inst_cache[i].opcode != V810_OP_BR &&
                    inst_cache[i].opcode != V810_OP_NOP)
                    drc_findLastConditionalInst(inst_cache, i);
                break;
            case AM_IV: // Middle distance jump
                inst_cache[i].imm = (unsigned)(((highB & 0x3) << 24) + (lowB << 16) + (highB2 << 8) + lowB2);
                inst_cache[i].branch_offset = (signed)sign_26(inst_cache[i].imm);

                inst_cache[i].reg1 = 0xFF;
                inst_cache[i].reg2 = 0xFF;
                break;
            case AM_V:
                inst_cache[i].reg2 = (BYTE)((lowB >> 5) + ((highB & 0x3) << 3));
                inst_cache[i].reg1 = (BYTE)((lowB & 0x1F));
                inst_cache[i].imm = (highB2 << 8) + lowB2;
                reg_usage[inst_cache[i].reg1]++;
                reg_usage[inst_cache[i].reg2]++;
                break;
            case AM_VIa: // Mode6 form1
                inst_cache[i].imm = (highB2 << 8) + lowB2;
                inst_cache[i].reg1 = (BYTE)((lowB & 0x1F));
                inst_cache[i].reg2 = (BYTE)((lowB >> 5) + ((highB & 0x3) << 3));
                reg_usage[inst_cache[i].reg1]++;
                reg_usage[inst_cache[i].reg2]++;
                break;
            case AM_VIb: // Mode6 form2
                inst_cache[i].reg2 = (BYTE)((lowB >> 5) + ((highB & 0x3) << 3));
                inst_cache[i].imm = (highB2 << 8) + lowB2; // Whats the order??? 2,3,1 or 1,3,2
                inst_cache[i].reg1 = (BYTE)((lowB & 0x1F));
                reg_usage[inst_cache[i].reg1]++;
                reg_usage[inst_cache[i].reg2]++;
                break;
            case AM_VII: // Unhandled
                break;
            case AM_VIII: // Unhandled
                break;
            case AM_IX:
                inst_cache[i].imm = (unsigned)((lowB & 0x1)); // Mode ID, Ignore for now

                inst_cache[i].reg1 = 0xFF;
                inst_cache[i].reg2 = 0xFF;
                break;
            case AM_BSTR: // Bit String Subopcodes
                inst_cache[i].reg2 = (BYTE)((lowB >> 5) + ((highB & 0x3) << 3));
                inst_cache[i].reg1 = (BYTE)((lowB & 0x1F));
                reg_usage[inst_cache[i].reg1]++;
                reg_usage[inst_cache[i].reg2]++;
                break;
            case AM_FPP: // Floating Point Subcode
                inst_cache[i].reg2 = (BYTE)((lowB >> 5) + ((highB & 0x3) << 3));
                inst_cache[i].reg1 = (BYTE)((lowB & 0x1F));
                inst_cache[i].imm = (unsigned)(((highB2 >> 2)&0x3F));
                reg_usage[inst_cache[i].reg1]++;
                reg_usage[inst_cache[i].reg2]++;
                break;
            case AM_UDEF: // Invalid opcode.
                inst_cache[i].reg1 = 0xFF;
                inst_cache[i].reg2 = 0xFF;
                break;
            default: // Invalid opcode.
                inst_cache[i].reg1 = 0xFF;
                inst_cache[i].reg2 = 0xFF;
                cur_PC += 2;
                break;
        }

        cur_PC += am_size_table[optable[inst_cache[i].opcode].addr_mode];
        block->cycles += opcycle[inst_cache[i].opcode];
    }

    return i;
}

// Translates a V810 block into ARM code
int drc_translateBlock(exec_block *block) {
    int i, j;
    int err = 0;
    // Stores the number of clock cycles since the last branch
    unsigned int cycles = 0;
    unsigned int num_v810_inst, num_arm_inst;
    // Maps V810 registers to ARM registers
    BYTE phys_regs[32];
    // For each V810 instruction, the ARM registers mapped to reg1 and reg2. If
    // they're not cached, they will be mapped to r2 and r3.
    BYTE arm_reg1, arm_reg2;
    BYTE arm_cond;
    WORD start_PC = v810_state->PC;
    WORD end_PC;
    // For each V810 instruction, tells if either reg1 or reg2 is cached
    bool unmapped_registers;
    BYTE next_available_reg;
    // Tells if reg1 or reg2 has been modified by the current V810 instruction
    bool reg1_modified;
    bool reg2_modified;
    // The value of inst_ptr at the start of a V810 instruction
    arm_inst* inst_ptr_start;

    v810_instruction *inst_cache = linearAlloc(MAX_INST*sizeof(v810_instruction));
    arm_inst* trans_cache = linearAlloc(8*MAX_INST*sizeof(arm_inst));
    WORD* pool_cache_start = NULL;
#ifdef LITERAL_POOL
    pool_cache_start = linearAlloc(256*4);
#endif
    WORD pool_offset = 0;

    drc_scanBlockBounds(&start_PC, &end_PC);
    dprintf(0, "[DRC]: new block - 0x%x->0x%x\n", start_PC, end_PC);

    // Clear previous block register stats
    memset(reg_usage, 0, 32);

    // First pass: decode V810 instructions
    num_v810_inst = drc_decodeInstructions(block, inst_cache, start_PC, end_PC);
    dprintf(3, "[DRC]: V810 block size - %d\n", num_v810_inst);

    // Second pass: map the most used V810 registers to ARM registers
    drc_mapRegs(block);
    for (i = 0; i < 32; i++)
        phys_regs[i] = drc_getPhysReg(i, block->reg_map);

    inst_ptr = &trans_cache[0];
    pool_ptr = pool_cache_start;

    // Third pass: generate ARM instructions
    for (i = 0; i < num_v810_inst; i++) {
        inst_cache[i].start_pos = (HWORD) (inst_ptr - trans_cache + pool_offset);
        inst_ptr_start = inst_ptr;
        drc_setEntry(inst_cache[i].PC, cache_start + block->phys_offset + inst_cache[i].start_pos, block);
        cycles += opcycle[inst_cache[i].opcode];

        reg1_modified = false;
        reg2_modified = false;
        unmapped_registers = false;
        next_available_reg = 2;
        arm_reg1 = 0;
        arm_reg2 = 0;

        // Map V810 registers and preload them if unmapped
        if (inst_cache[i].reg1 != 0xFF) {
            arm_reg1 = phys_regs[inst_cache[i].reg1];
            if (!arm_reg1) {
                unmapped_registers = true;
                arm_reg1 = next_available_reg++;
                if (inst_cache[i].reg1)
                    LDR_IO(arm_reg1, 11, inst_cache[i].reg1 * 4);
                else
                    MOV_I(arm_reg1, 0, 0);
            }
        }

        if (inst_cache[i].reg2 != 0xFF) {
            arm_reg2 = phys_regs[inst_cache[i].reg2];
            if (!arm_reg2) {
                unmapped_registers = true;
                arm_reg2 = next_available_reg++;
                if (inst_cache[i].reg2)
                    LDR_IO(arm_reg2, 11, inst_cache[i].reg2 * 4);
                else
                    MOV_I(arm_reg2, 0, 0);
            }
        }

        if (inst_cache[i].save_flags) {
            MRS(0);
            PUSH(1<<0);
        }

        switch (inst_cache[i].opcode) {
            case V810_OP_JMP: // jmp [reg1]
                STR_IO(arm_reg1, 11, 33 * 4);
                ADDCYCLES();
                POP(1 << 15);
                break;
            case V810_OP_JR: // jr imm26
                if (abs(inst_cache[i].branch_offset) < 1024) {
                    HANDLEINT(inst_cache[i].PC + inst_cache[i].branch_offset);
                    B(ARM_COND_AL, 0);
                } else {
                    ADDCYCLES();
                    LDW_I(0, inst_cache[i].PC + inst_cache[i].branch_offset);
                    // Save the new PC
                    STR_IO(0, 11, 33 * 4);
                    POP(1 << 15);
                }
                break;
            case V810_OP_JAL: // jal disp26
                LDW_I(0, inst_cache[i].PC + inst_cache[i].branch_offset);
                LDW_I(1, inst_cache[i].PC + 4);
                // Save the new PC
                STR_IO(0, 11, 33 * 4);
                // Link the return address
                if (phys_regs[31])
                    MOV(phys_regs[31], 1);
                else
                    STR_IO(1, 11, 31 * 4);
                ADDCYCLES();
                POP(1 << 15);
                break;
            case V810_OP_RETI:
                LDR_IO(0, 11, (35 + PSW) * 4);
                TST_I(0, PSW_NP >> 8, 24);
                // ldrne r1, S_REG[FEPC]
                new_ldst_imm_off(ARM_COND_NE, 1, 1, 0, 0, 1, 11, 1, (35 + FEPC) * 4);
                // ldrne r2, S_REG[FEPSW]
                new_ldst_imm_off(ARM_COND_NE, 1, 1, 0, 0, 1, 11, 2, (35 + FEPSW) * 4);
                // ldreq r1, S_REG[EIPC]
                new_ldst_imm_off(ARM_COND_EQ, 1, 1, 0, 0, 1, 11, 1, (35 + EIPC) * 4);
                // ldreq r2, S_REG[EIPSW]
                new_ldst_imm_off(ARM_COND_EQ, 1, 1, 0, 0, 1, 11, 2, (35 + EIPSW) * 4);

                STR_IO(1, 11, 33 * 4);
                STR_IO(2, 11, (35 + PSW) * 4);
                POP(1 << 15);
                break;
            case V810_OP_BV:
            case V810_OP_BL:
            case V810_OP_BE:
            case V810_OP_BN:
            case V810_OP_BR:
            case V810_OP_BLT:
            case V810_OP_BLE:
            case V810_OP_BNV:
            case V810_OP_BNL:
            case V810_OP_BNE:
            case V810_OP_BP:
            case V810_OP_BGE:
            case V810_OP_BGT:
                arm_cond = cond_map[inst_cache[i].opcode & 0xF];
                HANDLEINT(inst_cache[i].PC);
                B(arm_cond, 0);
                break;
            // Special case: bnh and bh can't be directly translated to ARM
            case V810_OP_BNH:
                HANDLEINT(inst_cache[i].PC);
                // Branch if C == 1 or Z == 1
                B(ARM_COND_CS, 0);
                B(ARM_COND_EQ, 0);
                break;
            case V810_OP_BH:
                HANDLEINT(inst_cache[i].PC);
                // Branch if C == 0 and Z == 0
                Boff(ARM_COND_CS, 3);
                Boff(ARM_COND_EQ, 2);
                B(ARM_COND_AL, 0);
                break;
            case V810_OP_MOVHI: // movhi imm16, reg1, reg2:
                MOV_I(0, (inst_cache[i].imm >> 8), 8);
                ORR_I(0, (inst_cache[i].imm & 0xFF), 16);
                // The zero-register will always be zero, so don't add it
                if (inst_cache[i].reg1 == 0) {
                    MOV(arm_reg2, 0);
                } else {
                    ADD(arm_reg2, 0, arm_reg1);
                }

                reg2_modified = true;
                break;
            case V810_OP_MOVEA: // movea imm16, reg1, reg2
                MOV_I(0, (inst_cache[i].imm >> 8), 8);
                ORR_I(0, (inst_cache[i].imm & 0xFF), 16);
                // The zero-register will always be zero, so don't add it
                if (inst_cache[i].reg1 == 0)
                    MOV_IS(arm_reg2, 0, ARM_SHIFT_ASR, 16);
                else
                    ADD_IS(arm_reg2, arm_reg1, 0, ARM_SHIFT_ASR, 16);

                reg2_modified = true;
                break;
            case V810_OP_MOV: // mov reg1, reg2
                if (inst_cache[i].reg1 != 0)
                    MOV(arm_reg2, arm_reg1);
                else
                    MOV_I(arm_reg2, 0, 0);

                reg2_modified = true;
                break;
            case V810_OP_ADD: // add reg1, reg2
                ADDS(arm_reg2, arm_reg2, arm_reg1);
                reg2_modified = true;
                break;
            case V810_OP_SUB: // sub reg1, reg2
                SUBS(arm_reg2, arm_reg2, arm_reg1);
                INV_CARRY();
                reg2_modified = true;
                break;
            case V810_OP_CMP: // cmp reg1, reg2
                if (inst_cache[i].reg1 == 0)
                    CMP_I(arm_reg2, 0, 0);
                else if (inst_cache[i].reg2 == 0)
                    RSBS_I(0, arm_reg1, 0, 0);
                else
                    CMP(arm_reg2, arm_reg1);
                INV_CARRY();
                break;
            case V810_OP_SHL: // shl reg1, reg2
                LSLS(arm_reg2, arm_reg2, arm_reg1);
                reg2_modified = true;
                break;
            case V810_OP_SHR: // shr reg1, reg2
                LSRS(arm_reg2, arm_reg2, arm_reg1);
                reg2_modified = true;
                break;
            case V810_OP_SAR: // sar reg1, reg2
                ASRS(arm_reg2, arm_reg2, arm_reg1);
                reg2_modified = true;
                break;
            case V810_OP_MUL: // mul reg1, reg2
                SMULLS(arm_reg2, phys_regs[30], arm_reg2, arm_reg1);
                // If the 30th register isn't being used in the block, the high
                // word of the multiplication will be in r0 (because
                // phys_regs[30] == 0) and we'll have to save it manually
                if (!phys_regs[30]) {
                    STR_IO(0, 11, 30 * 4);
                }
                reg2_modified = true;
                break;
            case V810_OP_MULU: // mul reg1, reg2
                UMULLS(arm_reg2, phys_regs[30], arm_reg2, arm_reg1);
                if (!phys_regs[30]) {
                    STR_IO(0, 11, 30 * 4);
                }
                reg2_modified = true;
                break;
            case V810_OP_DIV: // div reg1, reg2
                // reg2/reg1 -> reg2 (__divsi3)
                // reg2%reg1 -> r30 (__modsi3)
                MOV(0, arm_reg2);
                MOV(1, arm_reg1);
                LDR_IO(2, 11, 69 * 4);
                ADD_I(2, 2, DRC_RELOC_DIVSI*4, 0);
                BLX(ARM_COND_AL, 2);

                MOV(3, arm_reg2);
                MOV(1, arm_reg1);
                MOV(arm_reg2, 0);
                MOV(0, 3);

                LDR_IO(2, 11, 69 * 4);
                ADD_I(2, 2, DRC_RELOC_MODSI*4, 0);
                BLX(ARM_COND_AL, 2);

                if (!phys_regs[30])
                    STR_IO(0, 11, 30 * 4);
                else
                    MOV(phys_regs[30], 0);

                reg2_modified = true;
                break;
            case V810_OP_DIVU: // divu reg1, reg2
                MOV(0, arm_reg2);
                MOV(1, arm_reg1);
                LDR_IO(2, 11, 69 * 4);
                ADD_I(2, 2, DRC_RELOC_UDIVSI*4, 0);
                BLX(ARM_COND_AL, 2);

                MOV(3, arm_reg2);
                MOV(1, arm_reg1);
                MOV(arm_reg2, 0);
                MOV(0, 3);

                LDR_IO(2, 11, 69 * 4);
                ADD_I(2, 2, DRC_RELOC_UMODSI*4, 0);
                BLX(ARM_COND_AL, 2);

                if (!phys_regs[30])
                    STR_IO(0, 11, 30 * 4);
                else
                    MOV(phys_regs[30], 0);
                break;
            case V810_OP_OR: // or reg1, reg2
                ORRS(arm_reg2, arm_reg2, arm_reg1);
                reg2_modified = true;
                break;
            case V810_OP_AND: // and reg1, reg2
                ANDS(arm_reg2, arm_reg2, arm_reg1);
                reg2_modified = true;
                break;
            case V810_OP_XOR: // xor reg1, reg2
                EORS(arm_reg2, arm_reg2, arm_reg1);
                reg2_modified = true;
                break;
            case V810_OP_NOT: // not reg1, reg2
                MVNS(arm_reg2, arm_reg1);
                reg2_modified = true;
                break;
            case V810_OP_MOV_I: // mov imm5, reg2
                MOV_I(0, (sign_5(inst_cache[i].imm) & 0xFF), 8);
                MOV_IS(arm_reg2, 0, ARM_SHIFT_ASR, 24);
                reg2_modified = true;
                break;
            case V810_OP_ADD_I: // add imm5, reg2
                MOV_I(0, (sign_5(inst_cache[i].imm) & 0xFF), 8);
                ADDS_IS(arm_reg2, arm_reg2, 0, ARM_SHIFT_ASR, 24);
                reg2_modified = true;
                break;
            case V810_OP_CMP_I: // cmp imm5, reg2
                MOV_I(0, (sign_5(inst_cache[i].imm) & 0xFF), 8);
                CMP_IS(arm_reg2, 0, ARM_SHIFT_ASR, 24);
                INV_CARRY();
                reg2_modified = true;
                break;
            case V810_OP_SHL_I: // shl imm5, reg2
                // lsl reg2, reg2, #imm5
                new_data_proc_imm_shift(ARM_COND_AL, ARM_OP_MOV, 1, 0, arm_reg2, inst_cache[i].imm, ARM_SHIFT_LSL, arm_reg2);
                reg2_modified = true;
                break;
            case V810_OP_SHR_I: // shr imm5, reg2
                // lsr reg2, reg2, #imm5
                new_data_proc_imm_shift(ARM_COND_AL, ARM_OP_MOV, 1, 0, arm_reg2, inst_cache[i].imm, ARM_SHIFT_LSR, arm_reg2);
                reg2_modified = true;
                break;
            case V810_OP_SAR_I: // sar imm5, reg2
                // asr reg2, reg2, #imm5
                new_data_proc_imm_shift(ARM_COND_AL, ARM_OP_MOV, 1, 0, arm_reg2, inst_cache[i].imm, ARM_SHIFT_ASR, arm_reg2);
                reg2_modified = true;
                break;
            case V810_OP_ANDI: // andi imm16, reg1, reg2
                MOV_I(0, (inst_cache[i].imm >> 8), 24);
                ORR_I(0, (inst_cache[i].imm & 0xFF), 0);
                ANDS(arm_reg2, arm_reg1, 0);
                reg2_modified = true;
                break;
            case V810_OP_XORI: // xori imm16, reg1, reg2
                MOV_I(0, (inst_cache[i].imm >> 8), 24);
                ORR_I(0, (inst_cache[i].imm & 0xFF), 0);
                EORS(arm_reg2, arm_reg1, 0);
                reg2_modified = true;
                break;
            case V810_OP_ORI: // ori imm16, reg1, reg2
                MOV_I(0, (inst_cache[i].imm >> 8), 24);
                ORR_I(0, (inst_cache[i].imm & 0xFF), 0);
                ORRS(arm_reg2, arm_reg1, 0);
                reg2_modified = true;
                break;
            case V810_OP_ADDI: // addi imm16, reg1, reg2
                MOV_I(0, (inst_cache[i].imm >> 8), 8);
                ORR_I(0, (inst_cache[i].imm & 0xFF), 16);
                // asr r0, r0, #16
                new_data_proc_imm_shift(ARM_COND_AL, ARM_OP_MOV, 0, 0, 0, 16, ARM_SHIFT_ASR, 0);
                ADDS(arm_reg2, arm_reg1, 0);
                reg2_modified = true;
                break;
            case V810_OP_LD_B: // ld.b disp16 [reg1], reg2
            case V810_OP_IN_B: // in.b disp16 [reg1], reg2
                LDW_I(0, sign_16(inst_cache[i].imm));
                if (inst_cache[i].reg1 != 0) {
                    ADD(0, 0, arm_reg1);
                }

                LDR_IO(1, 11, 69 * 4);
                ADD_I(1, 1, DRC_RELOC_RBYTE*4, 0);
                BLX(ARM_COND_AL, 1);

                if (inst_cache[i].opcode == V810_OP_LD_B) {
                    // TODO: Implement sxtb
                    // lsl r0, r0, #24
                    new_data_proc_imm_shift(ARM_COND_AL, ARM_OP_MOV, 0, 0, 0, 24, ARM_SHIFT_LSL, 0);
                    // asr reg2, r0, #24
                    new_data_proc_imm_shift(ARM_COND_AL, ARM_OP_MOV, 0, 0, arm_reg2, 24, ARM_SHIFT_ASR, 0);
                } else {
                    MOV(arm_reg2, 0);
                }
                reg2_modified = true;
                break;
            case V810_OP_LD_H: // ld.h disp16 [reg1], reg2
            case V810_OP_IN_H: // in.h disp16 [reg1], reg2
                LDW_I(0, sign_16(inst_cache[i].imm));
                if (inst_cache[i].reg1 != 0) {
                    ADD(0, 0, arm_reg1);
                }

                LDR_IO(1, 11, 69 * 4);
                ADD_I(1, 1, DRC_RELOC_RHWORD*4, 0);
                BLX(ARM_COND_AL, 1);

                if (inst_cache[i].opcode == V810_OP_LD_H) {
                    // TODO: Implement sxth
                    // lsl r0, r0, #16
                    new_data_proc_imm_shift(ARM_COND_AL, ARM_OP_MOV, 0, 0, 0, 16, ARM_SHIFT_LSL, 0);
                    // asr reg2, r0, #16
                    new_data_proc_imm_shift(ARM_COND_AL, ARM_OP_MOV, 0, 0, arm_reg2, 16, ARM_SHIFT_ASR, 0);
                } else {
                    MOV(arm_reg2, 0);
                }
                reg2_modified = true;
                break;
            case V810_OP_LD_W: // ld.w disp16 [reg1], reg2
            case V810_OP_IN_W: // in.w disp16 [reg1], reg2
                LDW_I(0, sign_16(inst_cache[i].imm));
                if (inst_cache[i].reg1 != 0) {
                    ADD(0, 0, arm_reg1);
                }

                LDR_IO(1, 11, 69 * 4);
                ADD_I(1, 1, DRC_RELOC_RWORD*4, 0);
                BLX(ARM_COND_AL, 1);

                MOV(arm_reg2, 0);
                reg2_modified = true;
                break;
            case V810_OP_ST_B:  // st.h reg2, disp16 [reg1]
            case V810_OP_OUT_B: // out.h reg2, disp16 [reg1]
                LDW_I(0, sign_16(inst_cache[i].imm));
                if (inst_cache[i].reg1 != 0) {
                    ADD(0, 0, arm_reg1);
                }

                if (inst_cache[i].reg2 == 0)
                    MOV_I(1, 0, 0);
                else
                    MOV(1, arm_reg2);

                LDR_IO(2, 11, 69 * 4);
                ADD_I(2, 2, DRC_RELOC_WBYTE*4, 0);
                BLX(ARM_COND_AL, 2);
                break;
            case V810_OP_ST_H:  // st.h reg2, disp16 [reg1]
            case V810_OP_OUT_H: // out.h reg2, disp16 [reg1]
                LDW_I(0, sign_16(inst_cache[i].imm));
                if (inst_cache[i].reg1 != 0) {
                    ADD(0, 0, arm_reg1);
                }

                if (inst_cache[i].reg2 == 0)
                    MOV_I(1, 0, 0);
                else
                    MOV(1, arm_reg2);

                LDR_IO(2, 11, 69 * 4);
                ADD_I(2, 2, DRC_RELOC_WHWORD*4, 0);
                BLX(ARM_COND_AL, 2);
                break;
            case V810_OP_ST_W:  // st.h reg2, disp16 [reg1]
            case V810_OP_OUT_W: // out.h reg2, disp16 [reg1]
                LDW_I(0, sign_16(inst_cache[i].imm));
                if (inst_cache[i].reg1 != 0) {
                    ADD(0, 0, arm_reg1);
                }

                if (inst_cache[i].reg2 == 0)
                    MOV_I(1, 0, 0);
                else
                    MOV(1, arm_reg2);

                LDR_IO(2, 11, 69 * 4);
                ADD_I(2, 2, DRC_RELOC_WWORD*4, 0);
                BLX(ARM_COND_AL, 2);
                break;
            case V810_OP_LDSR: // ldsr reg2, regID
                // Stores reg2 in v810_state->S_REG[regID]
                STR_IO(arm_reg2, 11, (35 + inst_cache[i].imm) * 4);
                break;
            case V810_OP_STSR: // stsr regID, reg2
                // Loads v810_state->S_REG[regID] into reg2
                LDR_IO(arm_reg2, 11, (35 + inst_cache[i].imm) * 4);
                reg2_modified = true;
                break;
            case V810_OP_SEI: // sei
                // Set the 12th bit in v810_state->S_REG[PSW]
                LDR_IO(0, 11, (35 + PSW) * 4);
                ORR_I(0, 1, 20);
                STR_IO(0, 11, (35 + PSW) * 4);
                break;
            case V810_OP_CLI: // cli
                // Clear the 12th bit in v810_state->S_REG[PSW]
                LDR_IO(0, 11, (35 + PSW) * 4);
                BIC_I(0, 1, 20);
                STR_IO(0, 11, (35 + PSW) * 4);
                break;
            case V810_OP_SETF: // setf imm5, reg2
                MOV_I(arm_reg2, 0, 0);
                // mov<cond> reg2, 1
                new_data_proc_imm(cond_map[inst_cache[i].imm & 0xF], ARM_OP_MOV, 0, 0, arm_reg2, 0, 1);
                reg2_modified = true;
                break;
            case V810_OP_FPP:
                switch (inst_cache[i].imm) {
                case V810_OP_CVT_WS:
                    VMOV_SR(0, arm_reg1);
                    VCVT_F32_S32(0, 0);
                    VMOV_RS(arm_reg2, 0);
                    reg2_modified = true;
                    break;
                case V810_OP_CVT_SW:
                    VMOV_SR(0, arm_reg1);
                    VCVT_S32_F32(0, 0);
                    VMOV_RS(arm_reg2, 0);
                    reg2_modified = true;
                    break;
                case V810_OP_CMPF_S:
                    VMOV_SR(0, arm_reg1);
                    VMOV_SR(1, arm_reg2);
                    VCMP_F32(1, 0);
                    break;
                case V810_OP_ADDF_S:
                    VMOV_SR(0, arm_reg1);
                    VMOV_SR(1, arm_reg2);
                    VADD_F32(0, 1, 0);
                    VMOV_RS(arm_reg2, 0);
                    reg2_modified = true;
                    break;
                case V810_OP_SUBF_S:
                    VMOV_SR(0, arm_reg1);
                    VMOV_SR(1, arm_reg2);
                    VSUB_F32(0, 1, 0);
                    VMOV_RS(arm_reg2, 0);
                    reg2_modified = true;
                    break;
                case V810_OP_MULF_S:
                    VMOV_SR(0, arm_reg1);
                    VMOV_SR(1, arm_reg2);
                    VMUL_F32(0, 1, 0);
                    VMOV_RS(arm_reg2, 0);
                    reg2_modified = true;
                    break;
                case V810_OP_DIVF_S:
                    VMOV_SR(0, arm_reg1);
                    VMOV_SR(1, arm_reg2);
                    VDIV_F32(0, 1, 0);
                    VMOV_RS(arm_reg2, 0);
                    reg2_modified = true;
                    break;
                default:
                    // TODO: Implement me!
                    MOV_IS(0, arm_reg1, 0, 0);
                    MOV_IS(1, arm_reg2, 0, 0);
                    LDR_IO(2, 11, 69 * 4);
                    ADD_I(2, 2, (DRC_RELOC_FPP+inst_cache[i].imm)*4, 0);
                    BLX(ARM_COND_AL, 2);
                    MOV_IS(arm_reg2, 0, 0, 0);
                    reg2_modified = true;
                    break;
                }
                break;
            case V810_OP_NOP:
                NOP();
                break;
            case END_BLOCK:
                POP(1 << 15);
                break;
            default:
                dprintf(0, "[DRC]: %s (0x%x) not implemented\n", optable[inst_cache[i].opcode].opname, inst_cache[i].opcode);
                // Fill unimplemented instructions with a nop and hope the game still runs
                NOP();
                break;
        }

        if (inst_cache[i].save_flags) {
            POP(1<<0);
            MSR(0);
        }

        if (unmapped_registers) {
            if (arm_reg1 < 4 && reg1_modified)
                STR_IO(arm_reg1, 11, inst_cache[i].reg1 * 4);
            if (arm_reg2 < 4 && reg2_modified)
                STR_IO(arm_reg2, 11, inst_cache[i].reg2 * 4);
        }

        inst_cache[i].trans_size = (BYTE) (inst_ptr - inst_ptr_start);

#ifdef LITERAL_POOL
        if ((inst_ptr - trans_cache) >= (1<<10) || (i == num_v810_inst-1 && (pool_ptr != pool_start))) {
            int pool_size = (int)(pool_ptr-pool_cache_start);
            // FIXME: Implement branch instructions
            ADD_I(15, 15, (BYTE)(pool_size-2), 30);

            num_arm_inst = (unsigned int)(inst_ptr - trans_cache);
            pool_start = &block->phys_loc[num_arm_inst];
            memcpy(pool_start, pool_cache_start, pool_size*sizeof(WORD));

            pool_ptr = pool_cache_start;
            pool_offset += pool_size;
        }
#endif
    }

    num_arm_inst = (unsigned int)(inst_ptr - trans_cache);
    if ((cache_pos - cache_start + num_arm_inst)*4 > CACHE_SIZE) {
        err = DRC_ERR_CACHE_FULL;
        goto cleanup;
    }

    // Fourth pass: assemble and link
    for (i = 0; i < num_v810_inst; i++) {
        HWORD start_pos = inst_cache[i].start_pos;
        for (j = start_pos; j < (start_pos + inst_cache[i].trans_size); j++) {
#ifdef LITERAL_POOL
            if (trans_cache[j].needs_pool) {
                // The literal pool is located at the end of the current block
                // Figure out the offset from the pc register, which points two
                // instructions ahead of the current one
                trans_cache[j].ldst_io.imm = (HWORD) ((trans_cache[j].pool_start + trans_cache[j].pool_pos) - (&block->phys_loc[j + 2]));
            }
#endif
            if (trans_cache[j].needs_branch) {
                int v810_offset = inst_cache[i].branch_offset;
                int arm_offset = (int)(drc_getEntry(inst_cache[i].PC + v810_offset, NULL) - &((cache_start + block->phys_offset)[j]) - 2);

                trans_cache[j].b_bl.imm = arm_offset & 0xffffff;
            }

            drc_assemble(&((cache_start + block->phys_offset)[j]), &trans_cache[j]);
        }
    }

    block->size = num_arm_inst + pool_offset;
    block->end_pc = v810_state->PC;

cleanup:
#ifdef LITERAL_POOL
    linearFree(pool_cache_start);
#endif
    linearFree(trans_cache);
    linearFree(inst_cache);
    return err;
}

// Clear and invalidate the dynarec cache
void drc_clearCache() {
    dprintf(0, "[DRC]: clearing cache...\n");
    cache_pos = cache_start;
    block_pos = 0;

    memset(cache_start, 0, CACHE_SIZE);
    memset(rom_block_map, 0, sizeof(WORD)*((V810_ROM1.highaddr - V810_ROM1.lowaddr) >> 1));
    memset(rom_entry_map, 0, sizeof(WORD)*((V810_ROM1.highaddr - V810_ROM1.lowaddr) >> 1));
    memset(ram_block_map, 0, sizeof(WORD)*((V810_VB_RAM.highaddr - V810_VB_RAM.lowaddr) >> 1));
    memset(rom_entry_map, 0, sizeof(WORD)*((V810_VB_RAM.highaddr - V810_VB_RAM.lowaddr) >> 1));

    FlushInvalidateCache();
}

// Returns the entrypoint for the V810 instruction in location loc if it exists
// and NULL if it needs to be translated. If p_block != NULL it will point to
// the block structure.
WORD* drc_getEntry(WORD loc, exec_block **p_block) {
    unsigned int map_pos;

    switch (loc>>24) {
        case 5:
            map_pos = ((loc-V810_VB_RAM.lowaddr)&V810_VB_RAM.highaddr)>>1;
            if (p_block)
                *p_block = block_ptr_start + ram_block_map[map_pos];
            return cache_start + ram_entry_map[map_pos];
        case 7:
            map_pos = ((loc-V810_ROM1.lowaddr)&V810_ROM1.highaddr)>>1;
            if (p_block)
                *p_block = block_ptr_start + rom_block_map[map_pos];
            return cache_start + rom_entry_map[map_pos];
        default:
            return NULL;
    }
}

// Sets a new entrypoint for the V810 instruction in location loc and the
// corresponding block
void drc_setEntry(WORD loc, WORD *entry, exec_block *block) {
    unsigned int map_pos;

    switch (loc>>24) {
        case 5:
            map_pos = ((loc-V810_VB_RAM.lowaddr)&V810_VB_RAM.highaddr)>>1;
            ram_block_map[map_pos] = block - block_ptr_start;
            ram_entry_map[map_pos] = entry - cache_start;
            break;
        case 7:
            map_pos = ((loc-V810_ROM1.lowaddr)&V810_ROM1.highaddr)>>1;
            rom_block_map[map_pos] = block - block_ptr_start;
            rom_entry_map[map_pos] = entry - cache_start;
            break;
        default:
            return;
    }
}

// Initialize the dynarec
void drc_init() {
    // V810 instructions are 16-bit aligned, so we can ignore the last bit of the PC
    rom_block_map = calloc(sizeof(WORD), (V810_ROM1.highaddr - V810_ROM1.lowaddr) >> 1);
    rom_entry_map = calloc(sizeof(WORD), (V810_ROM1.highaddr - V810_ROM1.lowaddr) >> 1);
    ram_block_map = calloc(sizeof(WORD), (V810_VB_RAM.highaddr - V810_VB_RAM.lowaddr) >> 1);
    ram_entry_map = calloc(sizeof(WORD), (V810_VB_RAM.highaddr - V810_VB_RAM.lowaddr) >> 1);
    block_ptr_start = linearAlloc(MAX_NUM_BLOCKS*sizeof(exec_block));

    hbHaxInit();

    if (tVBOpt.DYNAREC) {
        cache_start = memalign(0x1000, CACHE_SIZE);
        ReprotectMemory(cache_start, CACHE_SIZE/0x1000, 0x7);
        FlushInvalidateCache();
    } else {
        // cache_start = &cache_dump_bin;
        drc_loadSavedCache();
    }

    cache_pos = cache_start;
    dprintf(0, "[DRC]: cache_start = %p\n", cache_start);
}

// Cleanup and exit
void drc_exit() {
    if (tVBOpt.DYNAREC)
        free(cache_start);
    free(rom_block_map);
    free(rom_entry_map);
    free(ram_block_map);
    free(ram_entry_map);
    linearFree(block_ptr_start);
    hbHaxExit();
}

exec_block* drc_getNextBlockStruct() {
    if (block_pos > MAX_NUM_BLOCKS)
        return NULL;
    return &block_ptr_start[block_pos++];
}

// Run V810 code until the next frame interrupt
int drc_run() {
    static unsigned int clocks;
    exec_block* cur_block = NULL;
    WORD* entrypoint;
    WORD entry_PC;

    while (!serviceDisplayInt(clocks, v810_state->PC)) {
        serviceInt(clocks, v810_state->PC);

        v810_state->PC &= V810_ROM1.highaddr;
        entry_PC = v810_state->PC;

        // Try to find a cached block
        // TODO: make sure we have enough free space
        entrypoint = drc_getEntry(v810_state->PC, &cur_block);
        if (tVBOpt.DYNAREC && (entrypoint == cache_start)) {
            cur_block = drc_getNextBlockStruct();
            if (!cur_block)
                return DRC_ERR_NO_BLOCKS;
            cur_block->phys_offset = (uint32_t) (cache_pos - cache_start);

            if (drc_translateBlock(cur_block) == DRC_ERR_CACHE_FULL) {
                drc_clearCache();
                continue;
            }

            dprintf(3, "[DRC]: ARM block size - %d\n", cur_block->size);
//            drc_dumpCache("cache_dump_rf.bin");
            FlushInvalidateCache();

            cache_pos += cur_block->size;
            entrypoint = drc_getEntry(entry_PC, NULL);
        }
        dprintf(3, "[DRC]: entry - 0x%x (0x%x)\n", entry_PC, (int)(entrypoint - cache_start)*4);
        if ((entrypoint < cache_start) || (entrypoint > cache_start + CACHE_SIZE))
            return DRC_ERR_BAD_ENTRY;

        v810_state->cycles = clocks;
        drc_executeBlock(entrypoint, cur_block);

        v810_state->PC &= V810_ROM1.highaddr;
        clocks = v810_state->cycles;

        dprintf(4, "[DRC]: end - 0x%x\n", v810_state->PC);
        if (v810_state->PC < V810_VB_RAM.lowaddr || v810_state->PC > V810_ROM1.highaddr)
            return DRC_ERR_BAD_PC;

        if (v810_state->ret) {
            v810_state->ret = 0;
            break;
        }
    }

    return 0;
}

void drc_loadSavedCache() {
    FILE* f;
    int ret;
    f = fopen("rom_block_map", "r");
    ret = fread(rom_block_map, sizeof(WORD), (V810_ROM1.highaddr - V810_ROM1.lowaddr) >> 1, f);
    fclose(f);
    f = fopen("rom_entry_map", "r");
    ret = fread(rom_entry_map, sizeof(WORD), (V810_ROM1.highaddr - V810_ROM1.lowaddr) >> 1, f);
    fclose(f);
    f = fopen("ram_block_map", "r");
    ret = fread(ram_block_map, sizeof(WORD), (V810_VB_RAM.highaddr - V810_VB_RAM.lowaddr) >> 1, f);
    fclose(f);
    f = fopen("ram_entry_map", "r");
    ret = fread(ram_entry_map, sizeof(WORD), (V810_VB_RAM.highaddr - V810_VB_RAM.lowaddr) >> 1, f);
    fclose(f);
    f = fopen("block_heap", "r");
    ret = fread(block_ptr_start, sizeof(exec_block*), MAX_NUM_BLOCKS, f);
    fclose(f);
}

// Dumps the translation cache onto a file
void drc_dumpCache(char* filename) {
    FILE* f = fopen(filename, "w");
    fwrite(cache_start, CACHE_SIZE, 1, f);
    fclose(f);

    f = fopen("rom_block_map", "w");
    fwrite(rom_block_map, sizeof(WORD), (V810_ROM1.highaddr - V810_ROM1.lowaddr) >> 1, f);
    fclose(f);
    f = fopen("rom_entry_map", "w");
    fwrite(rom_entry_map, sizeof(WORD), (V810_ROM1.highaddr - V810_ROM1.lowaddr) >> 1, f);
    fclose(f);
    f = fopen("ram_block_map", "w");
    fwrite(ram_block_map, sizeof(WORD), (V810_VB_RAM.highaddr - V810_VB_RAM.lowaddr) >> 1, f);
    fclose(f);
    f = fopen("ram_entry_map", "w");
    fwrite(ram_entry_map, sizeof(WORD), (V810_VB_RAM.highaddr - V810_VB_RAM.lowaddr) >> 1, f);
    fclose(f);
    f = fopen("block_heap", "w");
    fwrite(block_ptr_start, sizeof(exec_block*), MAX_NUM_BLOCKS, f);
    fclose(f);
}

void drc_dumpDebugInfo() {
    int i;
    FILE* f = fopen("debug_info.txt", "w");

    fprintf(f, "PC: 0x%08x\n", v810_state->PC);
    for (i = 0; i < 32; i++)
        fprintf(f, "r%d: 0x%08x\n", i, v810_state->P_REG[i]);

    for (i = 0; i < 32; i++)
        fprintf(f, "s%d: 0x%08x\n", i, v810_state->S_REG[i]);

    fprintf(f, "Cycles: %d\n", v810_state->cycles);
    fprintf(f, "Cache start: %p\n", cache_start);
    fprintf(f, "Cache pos: %p\n", cache_pos);

    if (tVBOpt.DEBUG) {
        debug_dumpdrccache();
        debug_dumpvbram();
    }

    fclose(f);
}