1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
|
#include <stdbool.h>
#include <stdio.h>
#include "allegro_compat.h"
#include "vb_types.h"
#include "vb_set.h"
#include "v810_cpu.h"
#include "v810_mem.h"
#include "vb_sound.h"
#include "vb_lfsr.h"
#define CH1 0
#define CH2 1
#define CH3 2
#define CH4 3
#define CH5 4
#define CH6_0 5
#define CH6_1 6
#define CH6_2 7
#define CH6_3 8
#define CH6_4 9
#define CH6_5 10
#define CH6_6 11
#define CH6_7 12
#define CH_TOTAL 13
SAMPLE* channel[CH_TOTAL];
int voice[CH_TOTAL];
int Curr_C6V, C6V_playing = 0;
int snd_ram_changed[6] = {0, 0, 0, 0, 0, 0};
BYTE* Noise_Opt[8] = {Noise_Opt0, Noise_Opt1, Noise_Opt2, Noise_Opt3, Noise_Opt4, Noise_Opt5, Noise_Opt6, Noise_Opt7};
int Noise_Opt_Size[8] = {OPT0LEN, OPT1LEN, OPT2LEN, OPT3LEN, OPT4LEN, OPT5LEN, OPT6LEN, OPT7LEN};
// Set up Allegro sound stuff
void sound_init() {
int i, index;
if (!tVBOpt.SOUND)
return;
if (-1 == install_sound(DIGI_AUTODETECT, MIDI_NONE, NULL)) {
dprintf(0, "[SND]: Error installing sound\n");
tVBOpt.SOUND = 0;
return;
}
for (i = CH1; i <= CH5; ++i) {
channel[i] = create_sample(8, 0, 0, 32);
}
for (i = CH6_0; i <= CH6_7; ++i) {
index = i - CH6_0;
channel[i] = create_sample(8, 0, 0, Noise_Opt_Size[index]);
memcpy(channel[i]->data, Noise_Opt[index], Noise_Opt_Size[index]);
}
for (i = 0; i < CH_TOTAL; ++i) {
voice[i] = allocate_voice(channel[i]);
voice_set_playmode(voice[i], PLAYMODE_LOOP);
}
// Set default to 0
Curr_C6V = voice[CH6_0];
}
// Close Allegro sound stuff
void sound_close() {
int i;
if (!tVBOpt.SOUND)
return;
for (i = 0; i < CH_TOTAL; ++i) {
voice_stop(voice[i]);
destroy_sample(channel[i]);
deallocate_voice(voice[i]);
}
remove_sound();
}
// FRQ reg converted to sampling frq for allegro
// manual says up to 2040, but any higher than 2038 crashes RB
// frequency * 32 samples per cycle
#define VB_FRQ_REG_TO_SAMP_FREQ(v) (5000000/(2048-(((v)>2038)?2038:(v))))
//#define VB_FRQ_REG_TO_SAMP_FREQ(v) (5000000/(2048-((v)*32)))
// Noise FRQ reg converted to sampling frq for allegro
#define RAND_FRQ_REG_TO_SAMP_FREQ(v) (500000/(2048-(v)))
// Handles updating allegro sounds according VB sound regs
void sound_update(int reg) {
BYTE reg1, reg2; // Temporary regs
int i, temp1, temp2;
char waveram[32];
const unsigned int wavelut[5] = {0x01000000, 0x01000080, 0x01000100, 0x01000180, 0x01000200};
if (!tVBOpt.SOUND)
return;
// Notify of change in sound ram
// Should check to make sure all channels disabled first (required on VB hardware)
switch (reg & 0xFFFFFF80) {
case WAVEDATA1:
snd_ram_changed[0] = 1;
break;
case WAVEDATA2:
snd_ram_changed[1] = 1;
break;
case WAVEDATA3:
snd_ram_changed[2] = 1;
break;
case WAVEDATA4:
snd_ram_changed[3] = 1;
break;
case WAVEDATA5:
snd_ram_changed[4] = 1;
break;
case MODDATA:
snd_ram_changed[5] = 1;
break;
default:
break;
}
switch (reg) {
// Channel 1
case S1INT:
reg1 = mem_rbyte(reg);
if (reg1 & 0x80) {
// Can only change RAM when disabled, so re-copy on enable in case sound RAM contents are changed
if (snd_ram_changed[mem_rbyte(S1RAM)]) {
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(S1RAM)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH1]->data, waveram, 32);
snd_ram_changed[mem_rbyte(S1RAM)] = 0;
// Output according to interval data
}
if (reg1 & 0x20) {
temp1 = 3.84f * (float) ((reg1 & 0x1F) + 1);
// Rig to stay at same freq, but for limited time (does this actually work?)
voice_sweep_frequency(voice[CH1], temp1, voice_get_frequency(voice[CH1]));
}
voice_set_position(voice[CH1], 0);
voice_start(voice[CH1]);
} else {
voice_stop(voice[CH1]);
}
break;
case S1LRV:
case S1EV0:
case S1EV1:
reg1 = mem_rbyte(S1LRV);
reg2 = mem_rbyte(S1EV0);
// There's probably a better way to do volume/pan
temp1 = (reg1 & 0x0F) | (reg1 >> 4); //OR L/R values
temp2 = 4;
// Find highest bit
for (i = 0; i < 4; i++) {
if (temp1 & 0x8) {
temp2 = i;
break;
}
temp1 <<= 1;
}
if (temp2 < 4) // L/R non-zero
voice_set_volume(voice[CH1], (1 << (3 - temp2)) * (reg2 >> 4)); //multiply by envelope
else
voice_set_volume(voice[CH1], 0);
voice_set_pan(voice[CH1], (128 + (((reg1 & 0x0F) - (reg1 >> 4)) * (8 << temp2))));
// Envelope on
if (reg2 & 0x01) {
// Need to check bit D1 for repeat cycle (not sure how to do this)
reg1 = mem_rbyte(S1EV1);
if (reg1 & 0x08) { //grow
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((255 - voice_get_volume(voice[CH1])) >> 4));
voice_ramp_volume(voice[CH1], temp1, 255);
} else { // Decay
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((voice_get_volume(voice[CH1]) - 0) >> 4));
voice_ramp_volume(voice[CH1], temp1, 0);
}
}
break;
case S1FQL:
case S1FQH:
reg1 = mem_rbyte(S1FQL);
reg2 = mem_rbyte(S1FQH);
voice_set_frequency(voice[CH1], VB_FRQ_REG_TO_SAMP_FREQ(((reg2 << 8) | reg1) & 0x7FF));
break;
case S1RAM:
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(reg)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH1]->data, waveram, 32);
break;
// Channel 2
case S2INT:
reg1 = mem_rbyte(reg);
if (reg1 & 0x80) {
// Can only change RAM when disabled, so re-copy on enable in case sound RAM contents are changed
if (snd_ram_changed[mem_rbyte(S2RAM)]) {
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(S2RAM)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH2]->data, waveram, 32);
snd_ram_changed[mem_rbyte(S2RAM)] = 0;
}
if (reg1 & 0x20) { // Output according to interval data
temp1 = 3.84f * (float) ((reg1 & 0x1F) + 1);
// Rig to stay at same freq, but for limited time (does this actually work?)
voice_sweep_frequency(voice[CH2], temp1, voice_get_frequency(voice[CH2]));
}
voice_set_position(voice[CH2], 0);
voice_start(voice[CH2]);
} else {
voice_stop(voice[CH2]);
}
break;
case S2LRV:
case S2EV0:
case S2EV1:
reg1 = mem_rbyte(S2LRV);
reg2 = mem_rbyte(S2EV0);
// There's probably a better way to do volume/pan
temp1 = (reg1 & 0x0F) | (reg1 >> 4); //OR L/R values
temp2 = 4;
for (i = 0; i < 4; i++) { //find highest bit
if (temp1 & 0x8) {
temp2 = i;
break;
}
temp1 <<= 1;
}
if (temp2 < 4) // L/R non-zero
voice_set_volume(voice[CH2], (1 << (3 - temp2)) * (reg2 >> 4)); //multiply by envelope
else
voice_set_volume(voice[CH2], 0);
voice_set_pan(voice[CH2], (128 + (((reg1 & 0x0F) - (reg1 >> 4)) * (8 << temp2))));
if (reg2 & 0x01) { // Envelope on
// Need to check bit D1 for repeat cycle (not sure how to do this)
reg1 = mem_rbyte(S2EV1);
if (reg1 & 0x08) { //grow
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((255 - voice_get_volume(voice[CH2])) >> 4));
voice_ramp_volume(voice[CH2], temp1, 255);
} else { // Decay
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((voice_get_volume(voice[CH2]) - 0) >> 4));
voice_ramp_volume(voice[CH2], temp1, 0);
}
}
break;
case S2FQL:
case S2FQH:
reg1 = mem_rbyte(S2FQL);
reg2 = mem_rbyte(S2FQH);
voice_set_frequency(voice[CH2], VB_FRQ_REG_TO_SAMP_FREQ(((reg2 << 8) | reg1) & 0x7FF));
break;
case S2RAM:
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(reg)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH2]->data, waveram, 32);
break;
// Channel 3
case S3INT:
reg1 = mem_rbyte(reg);
if (reg1 & 0x80) {
// Can only change RAM when disabled, so re-copy on enable in case sound RAM contents are changed
if (snd_ram_changed[mem_rbyte(S3RAM)]) {
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(S3RAM)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH3]->data, waveram, 32);
snd_ram_changed[mem_rbyte(S3RAM)] = 0;
}
if (reg1 & 0x20) { // Output according to interval data
temp1 = 3.84f * (float) ((reg1 & 0x1F) + 1);
// Rig to stay at same freq, but for limited time (does this actually work?)
voice_sweep_frequency(voice[CH3], temp1, voice_get_frequency(voice[CH3]));
}
voice_set_position(voice[CH3], 0);
voice_start(voice[CH3]);
} else {
voice_stop(voice[CH3]);
}
break;
case S3LRV:
case S3EV0:
case S3EV1:
reg1 = mem_rbyte(S3LRV);
reg2 = mem_rbyte(S3EV0);
// There's probably a better way to do volume/pan
temp1 = (reg1 & 0x0F) | (reg1 >> 4); // OR L/R values
temp2 = 4;
for (i = 0; i < 4; i++) { // Find highest bit
if (temp1 & 0x8) {
temp2 = i;
break;
}
temp1 <<= 1;
}
if (temp2 < 4) // L/R non-zero
voice_set_volume(voice[CH3], (1 << (3 - temp2)) * (reg2 >> 4)); //multiply by envelope
else
voice_set_volume(voice[CH3], 0);
voice_set_pan(voice[CH3], (128 + (((reg1 & 0x0F) - (reg1 >> 4)) * (8 << temp2))));
if (reg2 & 0x01) { // Envelope on
// Need to check bit D1 for repeat cycle (not sure how to do this)
reg1 = mem_rbyte(S3EV1);
if (reg1 & 0x08) { // Grow
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((255 - voice_get_volume(voice[CH3])) >> 4));
voice_ramp_volume(voice[CH3], temp1, 255);
} else { // Decay
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((voice_get_volume(voice[CH3]) - 0) >> 4));
voice_ramp_volume(voice[CH3], temp1, 0);
}
}
break;
case S3FQL:
case S3FQH:
reg1 = mem_rbyte(S3FQL);
reg2 = mem_rbyte(S3FQH);
voice_set_frequency(voice[CH3], VB_FRQ_REG_TO_SAMP_FREQ(((reg2 << 8) | reg1) & 0x7FF));
break;
case S3RAM:
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(reg)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH3]->data, waveram, 32);
break;
// Channel 4
case S4INT:
reg1 = mem_rbyte(reg);
if (reg1 & 0x80) {
// Can only change RAM when disabled, so re-copy on enable in case sound RAM contents are changed
if (snd_ram_changed[mem_rbyte(S4RAM)]) {
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(S4RAM)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH4]->data, waveram, 32);
snd_ram_changed[mem_rbyte(S4RAM)] = 0;
}
if (reg1 & 0x20) { // Output according to interval data
temp1 = 3.84f * (float) ((reg1 & 0x1F) + 1);
// Rig to stay at same freq, but for limited time (does this actually work?)
voice_sweep_frequency(voice[CH4], temp1, voice_get_frequency(voice[CH4]));
}
voice_set_position(voice[CH4], 0);
voice_start(voice[CH4]);
} else {
voice_stop(voice[CH4]);
}
break;
case S4LRV:
case S4EV0:
case S4EV1:
reg1 = mem_rbyte(S4LRV);
reg2 = mem_rbyte(S4EV0);
// There's probably a better way to do volume/pan
temp1 = (reg1 & 0x0F) | (reg1 >> 4); // OR L/R values
temp2 = 4;
for (i = 0; i < 4; i++) { //Find highest bit
if (temp1 & 0x8) {
temp2 = i;
break;
}
temp1 <<= 1;
}
if (temp2 < 4) // L/R non-zero
voice_set_volume(voice[CH4], (1 << (3 - temp2)) * (reg2 >> 4)); //multiply by envelope
else
voice_set_volume(voice[CH4], 0);
voice_set_pan(voice[CH4], (128 + (((reg1 & 0x0F) - (reg1 >> 4)) * (8 << temp2))));
if (reg2 & 0x01) { // Envelope on
// Need to check bit D1 for repeat cycle (not sure how to do this)
reg1 = mem_rbyte(S4EV1);
if (reg1 & 0x08) { // Grow
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((255 - voice_get_volume(voice[CH4])) >> 4));
voice_ramp_volume(voice[CH4], temp1, 255);
} else { // Decay
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((voice_get_volume(voice[CH4]) - 0) >> 4));
voice_ramp_volume(voice[CH4], temp1, 0);
}
}
break;
case S4FQL:
case S4FQH:
reg1 = mem_rbyte(S4FQL);
reg2 = mem_rbyte(S4FQH);
voice_set_frequency(voice[CH4], VB_FRQ_REG_TO_SAMP_FREQ(((reg2 << 8) | reg1) & 0x7FF));
break;
case S4RAM:
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(reg)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH4]->data, waveram, 32);
break;
// Channel 5
case S5INT:
reg1 = mem_rbyte(reg);
if (reg1 & 0x80) {
// Can only change RAM when disabled, so re-copy on enable in case sound RAM contents are changed
if (snd_ram_changed[mem_rbyte(S5RAM)]) {
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(S5RAM)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH5]->data, waveram, 32);
snd_ram_changed[mem_rbyte(S5RAM)] = 0;
}
if (reg1 & 0x20) { // Output according to interval data
temp1 = 3.84f * (float) ((reg1 & 0x1F) + 1);
// Rig to stay at same freq, but for limited time (does this actually work?)
voice_sweep_frequency(voice[CH5], temp1, voice_get_frequency(voice[CH5]));
}
voice_set_position(voice[CH5], 0);
voice_start(voice[CH5]);
} else {
voice_stop(voice[CH5]);
}
break;
case S5LRV:
case S5EV0:
case S5EV1:
case S5SWP:
reg1 = mem_rbyte(S5LRV);
reg2 = mem_rbyte(S5EV0);
// There's probably a better way to do volume/pan
temp1 = (reg1 & 0x0F) | (reg1 >> 4); //OR L/R values
temp2 = 4;
for (i = 0; i < 4; i++) { // Find highest bit
if (temp1 & 0x8) {
temp2 = i;
break;
}
temp1 <<= 1;
}
if (temp2 < 4) // L/R non-zero
voice_set_volume(voice[CH5], (1 << (3 - temp2)) * (reg2 >> 4)); //multiply by envelope
else
voice_set_volume(voice[CH5], 0);
voice_set_pan(voice[CH5], (128 + (((reg1 & 0x0F) - (reg1 >> 4)) * (8 << temp2))));
if (reg2 & 0x01) { // Envelope on
// Need to check bit D1 for repeat cycle (not sure how to do this)
reg1 = mem_rbyte(S5EV1);
if (reg1 & 0x08) { // Grow
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((255 - voice_get_volume(voice[CH5])) >> 4));
voice_ramp_volume(voice[CH5], temp1, 255);
} else { // Decay
temp1 = 15.36f * (float) (((reg1 & 0x07) + 1) * ((voice_get_volume(voice[CH5]) - 0) >> 4));
voice_ramp_volume(voice[CH5], temp1, 0);
}
}
// Sweep/modulation stuff
reg1 = mem_rbyte(S5EV1);
if (reg1 & 0x40) { // Sweep/modulation enabled
if (reg1 & 0x10) { // Modulation
//vb_printf("\nmodulation"); // Dunno how to do this yet
} else { // Sweep
//vb_printf("\nsweep"); // Doubt this is right
reg1 = mem_rbyte(S5SWP);
//operation interval
if (reg1 & 0x80)
temp1 = 7.68f * (float) ((reg1 >> 4) & 0x07);
else
temp1 = 0.96f * (float) ((reg1 >> 4) & 0x07);
if (reg1 & 0x08) { // Add freq
// Amount of frequency needed to be sweeped * the time
// per increment / amount changed per increment+1 (not
// sure if +1 is right, but the others seem to do that,
// plus that avoids div by 0)
temp2 = ((0x7FF - (((mem_rbyte(S5FQH) << 8) | mem_rbyte(S5FQL)) & 0x7FF)) * temp1) / ((reg1 & 0x07) + 1);
voice_sweep_frequency(voice[CH5], temp2, VB_FRQ_REG_TO_SAMP_FREQ(0x7FF));
} else { // Subtract freq
// Amount of frequency needed to be sweeped * the time
// per increment / amount changed per increment+1 (not
// sure if +1 is right, but the others seem to do that,
// plus that avoids div by 0)
temp2 = (((((mem_rbyte(S5FQH) << 8) | mem_rbyte(S5FQL)) & 0x7FF) - 0) * temp1) / ((reg1 & 0x07) + 1);
voice_sweep_frequency(voice[CH5], temp2, VB_FRQ_REG_TO_SAMP_FREQ(0));
}
}
}
break;
case S5FQL:
case S5FQH:
reg1 = mem_rbyte(S5FQL);
reg2 = mem_rbyte(S5FQH);
voice_set_frequency(voice[CH5], VB_FRQ_REG_TO_SAMP_FREQ(((reg2 << 8) | reg1) & 0x7FF));
break;
case S5RAM:
for (i = 0; i < 32; i++)
// Make 8 bit samples out of 6 bit samples
waveram[i] = (char) (mem_rbyte(wavelut[mem_rbyte(reg)] + (i << 2)) << 2) ^ ((char)0x80);
memcpy(channel[CH5]->data, waveram, 32);
break;
// Channel 6
case S6INT:
reg1 = mem_rbyte(reg);
if (reg1 & 0x80) {
if (reg1 & 0x20) { // Output according to interval data
temp1 = 3.84f * ((reg1 & 0x1F) + 1);
// Rig to stay at same freq, but for limited time (does this actually work?)
voice_sweep_frequency(Curr_C6V, temp1, voice_get_frequency(Curr_C6V));
}
voice_set_position(Curr_C6V, 0);
voice_start(Curr_C6V);
C6V_playing = 1;
} else {
voice_stop(Curr_C6V);
C6V_playing = 0;
}
break;
case S6LRV:
case S6EV0:
case S6EV1:
reg1 = mem_rbyte(S6LRV);
reg2 = mem_rbyte(S6EV0);
// There's probably a better way to do volume/pan
temp1 = (reg1 & 0x0F) | (reg1 >> 4); //OR L/R values
temp2 = 4;
for (i = 0; i < 4; i++) { // Find highest bit
if (temp1 & 0x8) {
temp2 = i;
break;
}
temp1 <<= 1;
}
if (temp2 < 4) // L/R non-zero
voice_set_volume(Curr_C6V, (1 << (3 - temp2)) * (reg2 >> 4)); // Multiply by envelope
else
voice_set_volume(Curr_C6V, 0);
voice_set_pan(Curr_C6V, (128 + (((reg1 & 0x0F) - (reg1 >> 4)) * (8 << temp2))));
if (reg2 & 0x01) { // Envelope on
// Need to check bit D1 for repeat cycle (not sure how to do this)
reg1 = mem_rbyte(S4EV1);
if (reg1 & 0x08) { // Grow
temp1 = 15.36f * ((reg1 & 0x07) + 1) * ((255 - voice_get_volume(Curr_C6V)) >> 4);
voice_ramp_volume(Curr_C6V, temp1, 255);
} else { // Decay
temp1 = 15.36f * ((reg1 & 0x07) + 1) * ((voice_get_volume(Curr_C6V) - 0) >> 4);
voice_ramp_volume(Curr_C6V, temp1, 0);
}
}
// Changing LFSR voice? Rather than recopy LFSR sequence and
// handle sequences of different lengths, just switch between
// pre-allocated LFSR voices
reg1 = mem_rbyte(S6EV1);
temp1 = ((reg1 >> 4) & 0x07);
temp1 += CH6_0;
// temp1 is one of ch6_0 to ch_6_7
if (Curr_C6V != voice[temp1]) {
voice_stop(Curr_C6V);
Curr_C6V = voice[temp1];
if (C6V_playing == 1)
voice_start(Curr_C6V);
}
break;
case S6FQL:
case S6FQH:
reg1 = mem_rbyte(S6FQL);
reg2 = mem_rbyte(S6FQH);
voice_set_frequency(Curr_C6V, RAND_FRQ_REG_TO_SAMP_FREQ(((reg2 << 8) | reg1) & 0x7FF));
break;
// Stop all sound output
case SSTOP:
for (i = 0; i < CH_TOTAL; ++i) {
voice_stop(voice[i]);
}
break;
default:
break;
}
}
|