diff options
Diffstat (limited to 'cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/curve.go')
| -rw-r--r-- | cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/curve.go | 943 |
1 files changed, 943 insertions, 0 deletions
diff --git a/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/curve.go b/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/curve.go new file mode 100644 index 0000000..e862060 --- /dev/null +++ b/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/curve.go @@ -0,0 +1,943 @@ +// Copyright (c) 2015-2021 The Decred developers +// Copyright 2013-2014 The btcsuite developers +// Use of this source code is governed by an ISC +// license that can be found in the LICENSE file. + +package secp256k1 + +import ( + "encoding/hex" + "math/big" +) + +// References: +// [SECG]: Recommended Elliptic Curve Domain Parameters +// https://www.secg.org/sec2-v2.pdf +// +// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone) +// +// [BRID]: On Binary Representations of Integers with Digits -1, 0, 1 +// (Prodinger, Helmut) + +// All group operations are performed using Jacobian coordinates. For a given +// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) +// where x = x1/z1^2 and y = y1/z1^3. + +// hexToFieldVal converts the passed hex string into a FieldVal and will panic +// if there is an error. This is only provided for the hard-coded constants so +// errors in the source code can be detected. It will only (and must only) be +// called with hard-coded values. +func hexToFieldVal(s string) *FieldVal { + b, err := hex.DecodeString(s) + if err != nil { + panic("invalid hex in source file: " + s) + } + var f FieldVal + if overflow := f.SetByteSlice(b); overflow { + panic("hex in source file overflows mod P: " + s) + } + return &f +} + +var ( + // Next 6 constants are from Hal Finney's bitcointalk.org post: + // https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565 + // May he rest in peace. + // + // They have also been independently derived from the code in the + // EndomorphismVectors function in genstatics.go. + endomorphismLambda = fromHex("5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72") + endomorphismBeta = hexToFieldVal("7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee") + endomorphismA1 = fromHex("3086d221a7d46bcde86c90e49284eb15") + endomorphismB1 = fromHex("-e4437ed6010e88286f547fa90abfe4c3") + endomorphismA2 = fromHex("114ca50f7a8e2f3f657c1108d9d44cfd8") + endomorphismB2 = fromHex("3086d221a7d46bcde86c90e49284eb15") + + // Alternatively, the following parameters are valid as well, however, they + // seem to be about 8% slower in practice. + // + // endomorphismLambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE") + // endomorphismBeta = hexToFieldVal("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40") + // endomorphismA1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3") + // endomorphismB1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15") + // endomorphismA2 = fromHex("3086D221A7D46BCDE86C90E49284EB15") + // endomorphismB2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8") +) + +// JacobianPoint is an element of the group formed by the secp256k1 curve in +// Jacobian projective coordinates and thus represents a point on the curve. +type JacobianPoint struct { + // The X coordinate in Jacobian projective coordinates. The affine point is + // X/z^2. + X FieldVal + + // The Y coordinate in Jacobian projective coordinates. The affine point is + // Y/z^3. + Y FieldVal + + // The Z coordinate in Jacobian projective coordinates. + Z FieldVal +} + +// MakeJacobianPoint returns a Jacobian point with the provided X, Y, and Z +// coordinates. +func MakeJacobianPoint(x, y, z *FieldVal) JacobianPoint { + var p JacobianPoint + p.X.Set(x) + p.Y.Set(y) + p.Z.Set(z) + return p +} + +// Set sets the Jacobian point to the provided point. +func (p *JacobianPoint) Set(other *JacobianPoint) { + p.X.Set(&other.X) + p.Y.Set(&other.Y) + p.Z.Set(&other.Z) +} + +// ToAffine reduces the Z value of the existing point to 1 effectively +// making it an affine coordinate in constant time. The point will be +// normalized. +func (p *JacobianPoint) ToAffine() { + // Inversions are expensive and both point addition and point doubling + // are faster when working with points that have a z value of one. So, + // if the point needs to be converted to affine, go ahead and normalize + // the point itself at the same time as the calculation is the same. + var zInv, tempZ FieldVal + zInv.Set(&p.Z).Inverse() // zInv = Z^-1 + tempZ.SquareVal(&zInv) // tempZ = Z^-2 + p.X.Mul(&tempZ) // X = X/Z^2 (mag: 1) + p.Y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1) + p.Z.SetInt(1) // Z = 1 (mag: 1) + + // Normalize the x and y values. + p.X.Normalize() + p.Y.Normalize() +} + +// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have +// z values of 1 and stores the result in the provided result param. That is to +// say result = p1 + p2. It performs faster addition than the generic add +// routine since less arithmetic is needed due to the ability to avoid the z +// value multiplications. +// +// NOTE: The points must be normalized for this function to return the correct +// result. The resulting point will be normalized. +func addZ1AndZ2EqualsOne(p1, p2, result *JacobianPoint) { + // To compute the point addition efficiently, this implementation splits + // the equation into intermediate elements which are used to minimize + // the number of field multiplications using the method shown at: + // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl + // + // In particular it performs the calculations using the following: + // H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I + // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H + // + // This results in a cost of 4 field multiplications, 2 field squarings, + // 6 field additions, and 5 integer multiplications. + x1, y1 := &p1.X, &p1.Y + x2, y2 := &p2.X, &p2.Y + x3, y3, z3 := &result.X, &result.Y, &result.Z + + // When the x coordinates are the same for two points on the curve, the + // y coordinates either must be the same, in which case it is point + // doubling, or they are opposite and the result is the point at + // infinity per the group law for elliptic curve cryptography. + if x1.Equals(x2) { + if y1.Equals(y2) { + // Since x1 == x2 and y1 == y2, point doubling must be + // done, otherwise the addition would end up dividing + // by zero. + DoubleNonConst(p1, result) + return + } + + // Since x1 == x2 and y1 == -y2, the sum is the point at + // infinity per the group law. + x3.SetInt(0) + y3.SetInt(0) + z3.SetInt(0) + return + } + + // Calculate X3, Y3, and Z3 according to the intermediate elements + // breakdown above. + var h, i, j, r, v FieldVal + var negJ, neg2V, negX3 FieldVal + h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3) + i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4) + j.Mul2(&h, &i) // J = H*I (mag: 1) + r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6) + v.Mul2(x1, &i) // V = X1*I (mag: 1) + negJ.Set(&j).Negate(1) // negJ = -J (mag: 2) + neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3) + x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6) + negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7) + j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3) + y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4) + z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6) + + // Normalize the resulting field values to a magnitude of 1 as needed. + x3.Normalize() + y3.Normalize() + z3.Normalize() +} + +// addZ1EqualsZ2 adds two Jacobian points that are already known to have the +// same z value and stores the result in the provided result param. That is to +// say result = p1 + p2. It performs faster addition than the generic add +// routine since less arithmetic is needed due to the known equivalence. +// +// NOTE: The points must be normalized for this function to return the correct +// result. The resulting point will be normalized. +func addZ1EqualsZ2(p1, p2, result *JacobianPoint) { + // To compute the point addition efficiently, this implementation splits + // the equation into intermediate elements which are used to minimize + // the number of field multiplications using a slightly modified version + // of the method shown at: + // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl + // + // In particular it performs the calculations using the following: + // A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B + // X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A + // + // This results in a cost of 5 field multiplications, 2 field squarings, + // 9 field additions, and 0 integer multiplications. + x1, y1, z1 := &p1.X, &p1.Y, &p1.Z + x2, y2 := &p2.X, &p2.Y + x3, y3, z3 := &result.X, &result.Y, &result.Z + + // When the x coordinates are the same for two points on the curve, the + // y coordinates either must be the same, in which case it is point + // doubling, or they are opposite and the result is the point at + // infinity per the group law for elliptic curve cryptography. + if x1.Equals(x2) { + if y1.Equals(y2) { + // Since x1 == x2 and y1 == y2, point doubling must be + // done, otherwise the addition would end up dividing + // by zero. + DoubleNonConst(p1, result) + return + } + + // Since x1 == x2 and y1 == -y2, the sum is the point at + // infinity per the group law. + x3.SetInt(0) + y3.SetInt(0) + z3.SetInt(0) + return + } + + // Calculate X3, Y3, and Z3 according to the intermediate elements + // breakdown above. + var a, b, c, d, e, f FieldVal + var negX1, negY1, negE, negX3 FieldVal + negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) + negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) + a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3) + b.SquareVal(&a) // B = A^2 (mag: 1) + c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3) + d.SquareVal(&c) // D = C^2 (mag: 1) + e.Mul2(x1, &b) // E = X1*B (mag: 1) + negE.Set(&e).Negate(1) // negE = -E (mag: 2) + f.Mul2(x2, &b) // F = X2*B (mag: 1) + x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5) + negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1) + y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4) + y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5) + z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1) + + // Normalize the resulting field values to a magnitude of 1 as needed. + x3.Normalize() + y3.Normalize() + z3.Normalize() +} + +// addZ2EqualsOne adds two Jacobian points when the second point is already +// known to have a z value of 1 (and the z value for the first point is not 1) +// and stores the result in the provided result param. That is to say result = +// p1 + p2. It performs faster addition than the generic add routine since +// less arithmetic is needed due to the ability to avoid multiplications by the +// second point's z value. +// +// NOTE: The points must be normalized for this function to return the correct +// result. The resulting point will be normalized. +func addZ2EqualsOne(p1, p2, result *JacobianPoint) { + // To compute the point addition efficiently, this implementation splits + // the equation into intermediate elements which are used to minimize + // the number of field multiplications using the method shown at: + // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl + // + // In particular it performs the calculations using the following: + // Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2, + // I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I + // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH + // + // This results in a cost of 7 field multiplications, 4 field squarings, + // 9 field additions, and 4 integer multiplications. + x1, y1, z1 := &p1.X, &p1.Y, &p1.Z + x2, y2 := &p2.X, &p2.Y + x3, y3, z3 := &result.X, &result.Y, &result.Z + + // When the x coordinates are the same for two points on the curve, the + // y coordinates either must be the same, in which case it is point + // doubling, or they are opposite and the result is the point at + // infinity per the group law for elliptic curve cryptography. Since + // any number of Jacobian coordinates can represent the same affine + // point, the x and y values need to be converted to like terms. Due to + // the assumption made for this function that the second point has a z + // value of 1 (z2=1), the first point is already "converted". + var z1z1, u2, s2 FieldVal + z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) + u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) + s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) + if x1.Equals(&u2) { + if y1.Equals(&s2) { + // Since x1 == x2 and y1 == y2, point doubling must be + // done, otherwise the addition would end up dividing + // by zero. + DoubleNonConst(p1, result) + return + } + + // Since x1 == x2 and y1 == -y2, the sum is the point at + // infinity per the group law. + x3.SetInt(0) + y3.SetInt(0) + z3.SetInt(0) + return + } + + // Calculate X3, Y3, and Z3 according to the intermediate elements + // breakdown above. + var h, hh, i, j, r, rr, v FieldVal + var negX1, negY1, negX3 FieldVal + negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2) + h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3) + hh.SquareVal(&h) // HH = H^2 (mag: 1) + i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4) + j.Mul2(&h, &i) // J = H*I (mag: 1) + negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2) + r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6) + rr.SquareVal(&r) // rr = r^2 (mag: 1) + v.Mul2(x1, &i) // V = X1*I (mag: 1) + x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) + x3.Add(&rr) // X3 = r^2+X3 (mag: 5) + negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) + y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3) + y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) + z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1) + z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4) + + // Normalize the resulting field values to a magnitude of 1 as needed. + x3.Normalize() + y3.Normalize() + z3.Normalize() +} + +// addGeneric adds two Jacobian points without any assumptions about the z +// values of the two points and stores the result in the provided result param. +// That is to say result = p1 + p2. It is the slowest of the add routines due +// to requiring the most arithmetic. +// +// NOTE: The points must be normalized for this function to return the correct +// result. The resulting point will be normalized. +func addGeneric(p1, p2, result *JacobianPoint) { + // To compute the point addition efficiently, this implementation splits + // the equation into intermediate elements which are used to minimize + // the number of field multiplications using the method shown at: + // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl + // + // In particular it performs the calculations using the following: + // Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2 + // S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1) + // V = U1*I + // X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H + // + // This results in a cost of 11 field multiplications, 5 field squarings, + // 9 field additions, and 4 integer multiplications. + x1, y1, z1 := &p1.X, &p1.Y, &p1.Z + x2, y2, z2 := &p2.X, &p2.Y, &p2.Z + x3, y3, z3 := &result.X, &result.Y, &result.Z + + // When the x coordinates are the same for two points on the curve, the + // y coordinates either must be the same, in which case it is point + // doubling, or they are opposite and the result is the point at + // infinity. Since any number of Jacobian coordinates can represent the + // same affine point, the x and y values need to be converted to like + // terms. + var z1z1, z2z2, u1, u2, s1, s2 FieldVal + z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1) + z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1) + u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1) + u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1) + s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1) + s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1) + if u1.Equals(&u2) { + if s1.Equals(&s2) { + // Since x1 == x2 and y1 == y2, point doubling must be + // done, otherwise the addition would end up dividing + // by zero. + DoubleNonConst(p1, result) + return + } + + // Since x1 == x2 and y1 == -y2, the sum is the point at + // infinity per the group law. + x3.SetInt(0) + y3.SetInt(0) + z3.SetInt(0) + return + } + + // Calculate X3, Y3, and Z3 according to the intermediate elements + // breakdown above. + var h, i, j, r, rr, v FieldVal + var negU1, negS1, negX3 FieldVal + negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2) + h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3) + i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2) + j.Mul2(&h, &i) // J = H*I (mag: 1) + negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2) + r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6) + rr.SquareVal(&r) // rr = r^2 (mag: 1) + v.Mul2(&u1, &i) // V = U1*I (mag: 1) + x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4) + x3.Add(&rr) // X3 = r^2+X3 (mag: 5) + negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6) + y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3) + y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4) + z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1) + z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4) + z3.Mul(&h) // Z3 = Z3*H (mag: 1) + + // Normalize the resulting field values to a magnitude of 1 as needed. + x3.Normalize() + y3.Normalize() + z3.Normalize() +} + +// AddNonConst adds the passed Jacobian points together and stores the result in +// the provided result param in *non-constant* time. +// +// NOTE: The points must be normalized for this function to return the correct +// result. The resulting point will be normalized. +func AddNonConst(p1, p2, result *JacobianPoint) { + // A point at infinity is the identity according to the group law for + // elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P. + if (p1.X.IsZero() && p1.Y.IsZero()) || p1.Z.IsZero() { + result.Set(p2) + return + } + if (p2.X.IsZero() && p2.Y.IsZero()) || p2.Z.IsZero() { + result.Set(p1) + return + } + + // Faster point addition can be achieved when certain assumptions are + // met. For example, when both points have the same z value, arithmetic + // on the z values can be avoided. This section thus checks for these + // conditions and calls an appropriate add function which is accelerated + // by using those assumptions. + isZ1One := p1.Z.IsOne() + isZ2One := p2.Z.IsOne() + switch { + case isZ1One && isZ2One: + addZ1AndZ2EqualsOne(p1, p2, result) + return + case p1.Z.Equals(&p2.Z): + addZ1EqualsZ2(p1, p2, result) + return + case isZ2One: + addZ2EqualsOne(p1, p2, result) + return + } + + // None of the above assumptions are true, so fall back to generic + // point addition. + addGeneric(p1, p2, result) +} + +// doubleZ1EqualsOne performs point doubling on the passed Jacobian point when +// the point is already known to have a z value of 1 and stores the result in +// the provided result param. That is to say result = 2*p. It performs faster +// point doubling than the generic routine since less arithmetic is needed due +// to the ability to avoid multiplication by the z value. +// +// NOTE: The resulting point will be normalized. +func doubleZ1EqualsOne(p, result *JacobianPoint) { + // This function uses the assumptions that z1 is 1, thus the point + // doubling formulas reduce to: + // + // X3 = (3*X1^2)^2 - 8*X1*Y1^2 + // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 + // Z3 = 2*Y1 + // + // To compute the above efficiently, this implementation splits the + // equation into intermediate elements which are used to minimize the + // number of field multiplications in favor of field squarings which + // are roughly 35% faster than field multiplications with the current + // implementation at the time this was written. + // + // This uses a slightly modified version of the method shown at: + // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl + // + // In particular it performs the calculations using the following: + // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) + // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C + // Z3 = 2*Y1 + // + // This results in a cost of 1 field multiplication, 5 field squarings, + // 6 field additions, and 5 integer multiplications. + x1, y1 := &p.X, &p.Y + x3, y3, z3 := &result.X, &result.Y, &result.Z + var a, b, c, d, e, f FieldVal + z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2) + a.SquareVal(x1) // A = X1^2 (mag: 1) + b.SquareVal(y1) // B = Y1^2 (mag: 1) + c.SquareVal(&b) // C = B^2 (mag: 1) + b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) + d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) + d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) + e.Set(&a).MulInt(3) // E = 3*A (mag: 3) + f.SquareVal(&e) // F = E^2 (mag: 1) + x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) + x3.Add(&f) // X3 = F+X3 (mag: 18) + f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) + y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) + y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) + + // Normalize the field values back to a magnitude of 1. + x3.Normalize() + y3.Normalize() + z3.Normalize() +} + +// doubleGeneric performs point doubling on the passed Jacobian point without +// any assumptions about the z value and stores the result in the provided +// result param. That is to say result = 2*p. It is the slowest of the point +// doubling routines due to requiring the most arithmetic. +// +// NOTE: The resulting point will be normalized. +func doubleGeneric(p, result *JacobianPoint) { + // Point doubling formula for Jacobian coordinates for the secp256k1 + // curve: + // + // X3 = (3*X1^2)^2 - 8*X1*Y1^2 + // Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4 + // Z3 = 2*Y1*Z1 + // + // To compute the above efficiently, this implementation splits the + // equation into intermediate elements which are used to minimize the + // number of field multiplications in favor of field squarings which + // are roughly 35% faster than field multiplications with the current + // implementation at the time this was written. + // + // This uses a slightly modified version of the method shown at: + // https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l + // + // In particular it performs the calculations using the following: + // A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C) + // E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C + // Z3 = 2*Y1*Z1 + // + // This results in a cost of 1 field multiplication, 5 field squarings, + // 6 field additions, and 5 integer multiplications. + x1, y1, z1 := &p.X, &p.Y, &p.Z + x3, y3, z3 := &result.X, &result.Y, &result.Z + var a, b, c, d, e, f FieldVal + z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2) + a.SquareVal(x1) // A = X1^2 (mag: 1) + b.SquareVal(y1) // B = Y1^2 (mag: 1) + c.SquareVal(&b) // C = B^2 (mag: 1) + b.Add(x1).Square() // B = (X1+B)^2 (mag: 1) + d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3) + d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8) + e.Set(&a).MulInt(3) // E = 3*A (mag: 3) + f.SquareVal(&e) // F = E^2 (mag: 1) + x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17) + x3.Add(&f) // X3 = F+X3 (mag: 18) + f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1) + y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9) + y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10) + + // Normalize the field values back to a magnitude of 1. + x3.Normalize() + y3.Normalize() + z3.Normalize() +} + +// DoubleNonConst doubles the passed Jacobian point and stores the result in the +// provided result parameter in *non-constant* time. +// +// NOTE: The point must be normalized for this function to return the correct +// result. The resulting point will be normalized. +func DoubleNonConst(p, result *JacobianPoint) { + // Doubling a point at infinity is still infinity. + if p.Y.IsZero() || p.Z.IsZero() { + result.X.SetInt(0) + result.Y.SetInt(0) + result.Z.SetInt(0) + return + } + + // Slightly faster point doubling can be achieved when the z value is 1 + // by avoiding the multiplication on the z value. This section calls + // a point doubling function which is accelerated by using that + // assumption when possible. + if p.Z.IsOne() { + doubleZ1EqualsOne(p, result) + return + } + + // Fall back to generic point doubling which works with arbitrary z + // values. + doubleGeneric(p, result) +} + +// splitK returns a balanced length-two representation of k and their signs. +// This is algorithm 3.74 from [GECC]. +// +// One thing of note about this algorithm is that no matter what c1 and c2 are, +// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is +// provable mathematically due to how a1/b1/a2/b2 are computed. +// +// c1 and c2 are chosen to minimize the max(k1,k2). +func splitK(k []byte) ([]byte, []byte, int, int) { + // All math here is done with big.Int, which is slow. + // At some point, it might be useful to write something similar to + // FieldVal but for N instead of P as the prime field if this ends up + // being a bottleneck. + bigIntK := new(big.Int) + c1, c2 := new(big.Int), new(big.Int) + tmp1, tmp2 := new(big.Int), new(big.Int) + k1, k2 := new(big.Int), new(big.Int) + + bigIntK.SetBytes(k) + // c1 = round(b2 * k / n) from step 4. + // Rounding isn't really necessary and costs too much, hence skipped + c1.Mul(endomorphismB2, bigIntK) + c1.Div(c1, curveParams.N) + // c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step) + // Rounding isn't really necessary and costs too much, hence skipped + c2.Mul(endomorphismB1, bigIntK) + c2.Div(c2, curveParams.N) + // k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed) + tmp1.Mul(c1, endomorphismA1) + tmp2.Mul(c2, endomorphismA2) + k1.Sub(bigIntK, tmp1) + k1.Add(k1, tmp2) + // k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed) + tmp1.Mul(c1, endomorphismB1) + tmp2.Mul(c2, endomorphismB2) + k2.Sub(tmp2, tmp1) + + // Note Bytes() throws out the sign of k1 and k2. This matters + // since k1 and/or k2 can be negative. Hence, we pass that + // back separately. + return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign() +} + +// nafScalar represents a positive integer up to a maximum value of 2^256 - 1 +// encoded in non-adjacent form. +// +// NAF is a signed-digit representation where each digit can be +1, 0, or -1. +// +// In order to efficiently encode that information, this type uses two arrays, a +// "positive" array where set bits represent the +1 signed digits and a +// "negative" array where set bits represent the -1 signed digits. 0 is +// represented by neither array having a bit set in that position. +// +// The Pos and Neg methods return the aforementioned positive and negative +// arrays, respectively. +type nafScalar struct { + // pos houses the positive portion of the representation. An additional + // byte is required for the positive portion because the NAF encoding can be + // up to 1 bit longer than the normal binary encoding of the value. + // + // neg houses the negative portion of the representation. Even though the + // additional byte is not required for the negative portion, since it can + // never exceed the length of the normal binary encoding of the value, + // keeping the same length for positive and negative portions simplifies + // working with the representation and allows extra conditional branches to + // be avoided. + // + // start and end specify the starting and ending index to use within the pos + // and neg arrays, respectively. This allows fixed size arrays to be used + // versus needing to dynamically allocate space on the heap. + // + // NOTE: The fields are defined in the order that they are to minimize the + // padding on 32-bit and 64-bit platforms. + pos [33]byte + start, end uint8 + neg [33]byte +} + +// Pos returns the bytes of the encoded value with bits set in the positions +// that represent a signed digit of +1. +func (s *nafScalar) Pos() []byte { + return s.pos[s.start:s.end] +} + +// Neg returns the bytes of the encoded value with bits set in the positions +// that represent a signed digit of -1. +func (s *nafScalar) Neg() []byte { + return s.neg[s.start:s.end] +} + +// naf takes a positive integer up to a maximum value of 2^256 - 1 and returns +// its non-adjacent form (NAF), which is a unique signed-digit representation +// such that no two consecutive digits are nonzero. See the documentation for +// the returned type for details on how the representation is encoded +// efficiently and how to interpret it +// +// NAF is useful in that it has the fewest nonzero digits of any signed digit +// representation, only 1/3rd of its digits are nonzero on average, and at least +// half of the digits will be 0. +// +// The aforementioned properties are particularly beneficial for optimizing +// elliptic curve point multiplication because they effectively minimize the +// number of required point additions in exchange for needing to perform a mix +// of fewer point additions and subtractions and possibly one additional point +// doubling. This is an excellent tradeoff because subtraction of points has +// the same computational complexity as addition of points and point doubling is +// faster than both. +func naf(k []byte) nafScalar { + // Strip leading zero bytes. + for len(k) > 0 && k[0] == 0x00 { + k = k[1:] + } + + // The non-adjacent form (NAF) of a positive integer k is an expression + // k = ∑_(i=0, l-1) k_i * 2^i where k_i ∈ {0,±1}, k_(l-1) != 0, and no two + // consecutive digits k_i are nonzero. + // + // The traditional method of computing the NAF of a positive integer is + // given by algorithm 3.30 in [GECC]. It consists of repeatedly dividing k + // by 2 and choosing the remainder so that the quotient (k−r)/2 is even + // which ensures the next NAF digit is 0. This requires log_2(k) steps. + // + // However, in [BRID], Prodinger notes that a closed form expression for the + // NAF representation is the bitwise difference 3k/2 - k/2. This is more + // efficient as it can be computed in O(1) versus the O(log(n)) of the + // traditional approach. + // + // The following code makes use of that formula to compute the NAF more + // efficiently. + // + // To understand the logic here, observe that the only way the NAF has a + // nonzero digit at a given bit is when either 3k/2 or k/2 has a bit set in + // that position, but not both. In other words, the result of a bitwise + // xor. This can be seen simply by considering that when the bits are the + // same, the subtraction is either 0-0 or 1-1, both of which are 0. + // + // Further, observe that the "+1" digits in the result are contributed by + // 3k/2 while the "-1" digits are from k/2. So, they can be determined by + // taking the bitwise and of each respective value with the result of the + // xor which identifies which bits are nonzero. + // + // Using that information, this loops backwards from the least significant + // byte to the most significant byte while performing the aforementioned + // calculations by propagating the potential carry and high order bit from + // the next word during the right shift. + kLen := len(k) + var result nafScalar + var carry uint8 + for byteNum := kLen - 1; byteNum >= 0; byteNum-- { + // Calculate k/2. Notice the carry from the previous word is added and + // the low order bit from the next word is shifted in accordingly. + kc := uint16(k[byteNum]) + uint16(carry) + var nextWord uint8 + if byteNum > 0 { + nextWord = k[byteNum-1] + } + halfK := kc>>1 | uint16(nextWord<<7) + + // Calculate 3k/2 and determine the non-zero digits in the result. + threeHalfK := kc + halfK + nonZeroResultDigits := threeHalfK ^ halfK + + // Determine the signed digits {0, ±1}. + result.pos[byteNum+1] = uint8(threeHalfK & nonZeroResultDigits) + result.neg[byteNum+1] = uint8(halfK & nonZeroResultDigits) + + // Propagate the potential carry from the 3k/2 calculation. + carry = uint8(threeHalfK >> 8) + } + result.pos[0] = carry + + // Set the starting and ending positions within the fixed size arrays to + // identify the bytes that are actually used. This is important since the + // encoding is big endian and thus trailing zero bytes changes its value. + result.start = 1 - carry + result.end = uint8(kLen + 1) + return result +} + +// ScalarMultNonConst multiplies k*P where k is a big endian integer modulo the +// curve order and P is a point in Jacobian projective coordinates and stores +// the result in the provided Jacobian point. +// +// NOTE: The point must be normalized for this function to return the correct +// result. The resulting point will be normalized. +func ScalarMultNonConst(k *ModNScalar, point, result *JacobianPoint) { + // Decompose K into k1 and k2 in order to halve the number of EC ops. + // See Algorithm 3.74 in [GECC]. + kBytes := k.Bytes() + k1, k2, signK1, signK2 := splitK(kBytes[:]) + zeroArray32(&kBytes) + + // The main equation here to remember is: + // k * P = k1 * P + k2 * ϕ(P) + // + // P1 below is P in the equation, P2 below is ϕ(P) in the equation + p1, p1Neg := new(JacobianPoint), new(JacobianPoint) + p1.Set(point) + p1Neg.Set(p1) + p1Neg.Y.Negate(1).Normalize() + + // NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinates are the same, so this + // math goes through. + p2, p2Neg := new(JacobianPoint), new(JacobianPoint) + p2.Set(p1) + p2.X.Mul(endomorphismBeta).Normalize() + p2Neg.Set(p2) + p2Neg.Y.Negate(1).Normalize() + + // Flip the positive and negative values of the points as needed + // depending on the signs of k1 and k2. As mentioned in the equation + // above, each of k1 and k2 are multiplied by the respective point. + // Since -k * P is the same thing as k * -P, and the group law for + // elliptic curves states that P(x, y) = -P(x, -y), it's faster and + // simplifies the code to just make the point negative. + if signK1 == -1 { + p1, p1Neg = p1Neg, p1 + } + if signK2 == -1 { + p2, p2Neg = p2Neg, p2 + } + + // NAF versions of k1 and k2 should have a lot more zeros. + // + // The Pos version of the bytes contain the +1s and the Neg versions + // contain the -1s. + k1NAF, k2NAF := naf(k1), naf(k2) + k1PosNAF, k1NegNAF := k1NAF.Pos(), k1NAF.Neg() + k2PosNAF, k2NegNAF := k2NAF.Pos(), k2NAF.Neg() + k1Len, k2Len := len(k1PosNAF), len(k2PosNAF) + + m := k1Len + if m < k2Len { + m = k2Len + } + + // Point Q = ∞ (point at infinity). + var q JacobianPoint + + // Add left-to-right using the NAF optimization. See algorithm 3.77 + // from [GECC]. This should be faster overall since there will be a lot + // more instances of 0, hence reducing the number of Jacobian additions + // at the cost of 1 possible extra doubling. + for i := 0; i < m; i++ { + // Since k1 and k2 are potentially different lengths and the calculation + // is being done left to right, pad the front of the shorter one with + // 0s. + var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte + if i >= m-k1Len { + k1BytePos, k1ByteNeg = k1PosNAF[i-(m-k1Len)], k1NegNAF[i-(m-k1Len)] + } + if i >= m-k2Len { + k2BytePos, k2ByteNeg = k2PosNAF[i-(m-k2Len)], k2NegNAF[i-(m-k2Len)] + } + for bit, mask := 7, uint8(1<<7); bit >= 0; bit, mask = bit-1, mask>>1 { + // Q = 2 * Q + DoubleNonConst(&q, &q) + + // Add or subtract the first point based on the signed digit of the + // NAF representation of k1 at this bit position. + // + // +1: Q = Q + p1 + // -1: Q = Q - p1 + // 0: Q = Q (no change) + if k1BytePos&mask == mask { + AddNonConst(&q, p1, &q) + } else if k1ByteNeg&mask == mask { + AddNonConst(&q, p1Neg, &q) + } + + // Add or subtract the second point based on the signed digit of the + // NAF representation of k2 at this bit position. + // + // +1: Q = Q + p2 + // -1: Q = Q - p2 + // 0: Q = Q (no change) + if k2BytePos&mask == mask { + AddNonConst(&q, p2, &q) + } else if k2ByteNeg&mask == mask { + AddNonConst(&q, p2Neg, &q) + } + } + } + + result.Set(&q) +} + +// ScalarBaseMultNonConst multiplies k*G where G is the base point of the group +// and k is a big endian integer. The result is stored in Jacobian coordinates +// (x1, y1, z1). +// +// NOTE: The resulting point will be normalized. +func ScalarBaseMultNonConst(k *ModNScalar, result *JacobianPoint) { + bytePoints := s256BytePoints() + + // Point Q = ∞ (point at infinity). + var q JacobianPoint + + // curve.bytePoints has all 256 byte points for each 8-bit window. The + // strategy is to add up the byte points. This is best understood by + // expressing k in base-256 which it already sort of is. Each "digit" in + // the 8-bit window can be looked up using bytePoints and added together. + var pt JacobianPoint + for i, byteVal := range k.Bytes() { + p := bytePoints[i][byteVal] + pt.X.Set(&p[0]) + pt.Y.Set(&p[1]) + pt.Z.SetInt(1) + AddNonConst(&q, &pt, &q) + } + + result.Set(&q) +} + +// isOnCurve returns whether or not the affine point (x,y) is on the curve. +func isOnCurve(fx, fy *FieldVal) bool { + // Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7 + y2 := new(FieldVal).SquareVal(fy).Normalize() + result := new(FieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize() + return y2.Equals(result) +} + +// DecompressY attempts to calculate the Y coordinate for the given X coordinate +// such that the result pair is a point on the secp256k1 curve. It adjusts Y +// based on the desired oddness and returns whether or not it was successful +// since not all X coordinates are valid. +// +// The magnitude of the provided X coordinate field val must be a max of 8 for a +// correct result. The resulting Y field val will have a max magnitude of 2. +func DecompressY(x *FieldVal, odd bool, resultY *FieldVal) bool { + // The curve equation for secp256k1 is: y^2 = x^3 + 7. Thus + // y = +-sqrt(x^3 + 7). + // + // The x coordinate must be invalid if there is no square root for the + // calculated rhs because it means the X coordinate is not for a point on + // the curve. + x3PlusB := new(FieldVal).SquareVal(x).Mul(x).AddInt(7) + if hasSqrt := resultY.SquareRootVal(x3PlusB); !hasSqrt { + return false + } + if resultY.Normalize().IsOdd() != odd { + resultY.Negate(1) + } + return true +} |
