summaryrefslogtreecommitdiff
path: root/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/field.go
diff options
context:
space:
mode:
Diffstat (limited to 'cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/field.go')
-rw-r--r--cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/field.go1680
1 files changed, 1680 insertions, 0 deletions
diff --git a/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/field.go b/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/field.go
new file mode 100644
index 0000000..43e27a9
--- /dev/null
+++ b/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/field.go
@@ -0,0 +1,1680 @@
+// Copyright (c) 2013-2014 The btcsuite developers
+// Copyright (c) 2015-2021 The Decred developers
+// Copyright (c) 2013-2021 Dave Collins
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package secp256k1
+
+// References:
+// [HAC]: Handbook of Applied Cryptography Menezes, van Oorschot, Vanstone.
+// http://cacr.uwaterloo.ca/hac/
+
+// All elliptic curve operations for secp256k1 are done in a finite field
+// characterized by a 256-bit prime. Given this precision is larger than the
+// biggest available native type, obviously some form of bignum math is needed.
+// This package implements specialized fixed-precision field arithmetic rather
+// than relying on an arbitrary-precision arithmetic package such as math/big
+// for dealing with the field math since the size is known. As a result, rather
+// large performance gains are achieved by taking advantage of many
+// optimizations not available to arbitrary-precision arithmetic and generic
+// modular arithmetic algorithms.
+//
+// There are various ways to internally represent each finite field element.
+// For example, the most obvious representation would be to use an array of 4
+// uint64s (64 bits * 4 = 256 bits). However, that representation suffers from
+// a couple of issues. First, there is no native Go type large enough to handle
+// the intermediate results while adding or multiplying two 64-bit numbers, and
+// second there is no space left for overflows when performing the intermediate
+// arithmetic between each array element which would lead to expensive carry
+// propagation.
+//
+// Given the above, this implementation represents the field elements as
+// 10 uint32s with each word (array entry) treated as base 2^26. This was
+// chosen for the following reasons:
+// 1) Most systems at the current time are 64-bit (or at least have 64-bit
+// registers available for specialized purposes such as MMX) so the
+// intermediate results can typically be done using a native register (and
+// using uint64s to avoid the need for additional half-word arithmetic)
+// 2) In order to allow addition of the internal words without having to
+// propagate the carry, the max normalized value for each register must
+// be less than the number of bits available in the register
+// 3) Since we're dealing with 32-bit values, 64-bits of overflow is a
+// reasonable choice for #2
+// 4) Given the need for 256-bits of precision and the properties stated in #1,
+// #2, and #3, the representation which best accommodates this is 10 uint32s
+// with base 2^26 (26 bits * 10 = 260 bits, so the final word only needs 22
+// bits) which leaves the desired 64 bits (32 * 10 = 320, 320 - 256 = 64) for
+// overflow
+//
+// Since it is so important that the field arithmetic is extremely fast for high
+// performance crypto, this type does not perform any validation where it
+// ordinarily would. See the documentation for FieldVal for more details.
+
+import (
+ "encoding/hex"
+)
+
+// Constants used to make the code more readable.
+const (
+ twoBitsMask = 0x3
+ fourBitsMask = 0xf
+ sixBitsMask = 0x3f
+ eightBitsMask = 0xff
+)
+
+// Constants related to the field representation.
+const (
+ // fieldWords is the number of words used to internally represent the
+ // 256-bit value.
+ fieldWords = 10
+
+ // fieldBase is the exponent used to form the numeric base of each word.
+ // 2^(fieldBase*i) where i is the word position.
+ fieldBase = 26
+
+ // fieldBaseMask is the mask for the bits in each word needed to
+ // represent the numeric base of each word (except the most significant
+ // word).
+ fieldBaseMask = (1 << fieldBase) - 1
+
+ // fieldMSBBits is the number of bits in the most significant word used
+ // to represent the value.
+ fieldMSBBits = 256 - (fieldBase * (fieldWords - 1))
+
+ // fieldMSBMask is the mask for the bits in the most significant word
+ // needed to represent the value.
+ fieldMSBMask = (1 << fieldMSBBits) - 1
+
+ // These fields provide convenient access to each of the words of the
+ // secp256k1 prime in the internal field representation to improve code
+ // readability.
+ fieldPrimeWordZero = 0x03fffc2f
+ fieldPrimeWordOne = 0x03ffffbf
+ fieldPrimeWordTwo = 0x03ffffff
+ fieldPrimeWordThree = 0x03ffffff
+ fieldPrimeWordFour = 0x03ffffff
+ fieldPrimeWordFive = 0x03ffffff
+ fieldPrimeWordSix = 0x03ffffff
+ fieldPrimeWordSeven = 0x03ffffff
+ fieldPrimeWordEight = 0x03ffffff
+ fieldPrimeWordNine = 0x003fffff
+)
+
+// FieldVal implements optimized fixed-precision arithmetic over the
+// secp256k1 finite field. This means all arithmetic is performed modulo
+// 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f.
+//
+// WARNING: Since it is so important for the field arithmetic to be extremely
+// fast for high performance crypto, this type does not perform any validation
+// of documented preconditions where it ordinarily would. As a result, it is
+// IMPERATIVE for callers to understand some key concepts that are described
+// below and ensure the methods are called with the necessary preconditions that
+// each method is documented with. For example, some methods only give the
+// correct result if the field value is normalized and others require the field
+// values involved to have a maximum magnitude and THERE ARE NO EXPLICIT CHECKS
+// TO ENSURE THOSE PRECONDITIONS ARE SATISFIED. This does, unfortunately, make
+// the type more difficult to use correctly and while I typically prefer to
+// ensure all state and input is valid for most code, this is a bit of an
+// exception because those extra checks really add up in what ends up being
+// critical hot paths.
+//
+// The first key concept when working with this type is normalization. In order
+// to avoid the need to propagate a ton of carries, the internal representation
+// provides additional overflow bits for each word of the overall 256-bit value.
+// This means that there are multiple internal representations for the same
+// value and, as a result, any methods that rely on comparison of the value,
+// such as equality and oddness determination, require the caller to provide a
+// normalized value.
+//
+// The second key concept when working with this type is magnitude. As
+// previously mentioned, the internal representation provides additional
+// overflow bits which means that the more math operations that are performed on
+// the field value between normalizations, the more those overflow bits
+// accumulate. The magnitude is effectively that maximum possible number of
+// those overflow bits that could possibly be required as a result of a given
+// operation. Since there are only a limited number of overflow bits available,
+// this implies that the max possible magnitude MUST be tracked by the caller
+// and the caller MUST normalize the field value if a given operation would
+// cause the magnitude of the result to exceed the max allowed value.
+//
+// IMPORTANT: The max allowed magnitude of a field value is 64.
+type FieldVal struct {
+ // Each 256-bit value is represented as 10 32-bit integers in base 2^26.
+ // This provides 6 bits of overflow in each word (10 bits in the most
+ // significant word) for a total of 64 bits of overflow (9*6 + 10 = 64). It
+ // only implements the arithmetic needed for elliptic curve operations.
+ //
+ // The following depicts the internal representation:
+ // -----------------------------------------------------------------
+ // | n[9] | n[8] | ... | n[0] |
+ // | 32 bits available | 32 bits available | ... | 32 bits available |
+ // | 22 bits for value | 26 bits for value | ... | 26 bits for value |
+ // | 10 bits overflow | 6 bits overflow | ... | 6 bits overflow |
+ // | Mult: 2^(26*9) | Mult: 2^(26*8) | ... | Mult: 2^(26*0) |
+ // -----------------------------------------------------------------
+ //
+ // For example, consider the number 2^49 + 1. It would be represented as:
+ // n[0] = 1
+ // n[1] = 2^23
+ // n[2..9] = 0
+ //
+ // The full 256-bit value is then calculated by looping i from 9..0 and
+ // doing sum(n[i] * 2^(26i)) like so:
+ // n[9] * 2^(26*9) = 0 * 2^234 = 0
+ // n[8] * 2^(26*8) = 0 * 2^208 = 0
+ // ...
+ // n[1] * 2^(26*1) = 2^23 * 2^26 = 2^49
+ // n[0] * 2^(26*0) = 1 * 2^0 = 1
+ // Sum: 0 + 0 + ... + 2^49 + 1 = 2^49 + 1
+ n [10]uint32
+}
+
+// String returns the field value as a normalized human-readable hex string.
+//
+// Preconditions: None
+// Output Normalized: Field is not modified -- same as input value
+// Output Max Magnitude: Field is not modified -- same as input value
+func (f FieldVal) String() string {
+ // f is a copy, so it's safe to normalize it without mutating the original.
+ f.Normalize()
+ return hex.EncodeToString(f.Bytes()[:])
+}
+
+// Zero sets the field value to zero in constant time. A newly created field
+// value is already set to zero. This function can be useful to clear an
+// existing field value for reuse.
+//
+// Preconditions: None
+// Output Normalized: Yes
+// Output Max Magnitude: 1
+func (f *FieldVal) Zero() {
+ f.n[0] = 0
+ f.n[1] = 0
+ f.n[2] = 0
+ f.n[3] = 0
+ f.n[4] = 0
+ f.n[5] = 0
+ f.n[6] = 0
+ f.n[7] = 0
+ f.n[8] = 0
+ f.n[9] = 0
+}
+
+// Set sets the field value equal to the passed value in constant time. The
+// normalization and magnitude of the two fields will be identical.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f := new(FieldVal).Set(f2).Add(1) so that f = f2 + 1 where f2 is not
+// modified.
+//
+// Preconditions: None
+// Output Normalized: Same as input value
+// Output Max Magnitude: Same as input value
+func (f *FieldVal) Set(val *FieldVal) *FieldVal {
+ *f = *val
+ return f
+}
+
+// SetInt sets the field value to the passed integer in constant time. This is
+// a convenience function since it is fairly common to perform some arithmetic
+// with small native integers.
+//
+// The field value is returned to support chaining. This enables syntax such
+// as f := new(FieldVal).SetInt(2).Mul(f2) so that f = 2 * f2.
+//
+// Preconditions: None
+// Output Normalized: Yes
+// Output Max Magnitude: 1
+func (f *FieldVal) SetInt(ui uint16) *FieldVal {
+ f.Zero()
+ f.n[0] = uint32(ui)
+ return f
+}
+
+// SetBytes packs the passed 32-byte big-endian value into the internal field
+// value representation in constant time. SetBytes interprets the provided
+// array as a 256-bit big-endian unsigned integer, packs it into the internal
+// field value representation, and returns either 1 if it is greater than or
+// equal to the field prime (aka it overflowed) or 0 otherwise in constant time.
+//
+// Note that a bool is not used here because it is not possible in Go to convert
+// from a bool to numeric value in constant time and many constant-time
+// operations require a numeric value.
+//
+// Preconditions: None
+// Output Normalized: Yes if no overflow, no otherwise
+// Output Max Magnitude: 1
+func (f *FieldVal) SetBytes(b *[32]byte) uint32 {
+ // Pack the 256 total bits across the 10 uint32 words with a max of
+ // 26-bits per word. This could be done with a couple of for loops,
+ // but this unrolled version is significantly faster. Benchmarks show
+ // this is about 34 times faster than the variant which uses loops.
+ f.n[0] = uint32(b[31]) | uint32(b[30])<<8 | uint32(b[29])<<16 |
+ (uint32(b[28])&twoBitsMask)<<24
+ f.n[1] = uint32(b[28])>>2 | uint32(b[27])<<6 | uint32(b[26])<<14 |
+ (uint32(b[25])&fourBitsMask)<<22
+ f.n[2] = uint32(b[25])>>4 | uint32(b[24])<<4 | uint32(b[23])<<12 |
+ (uint32(b[22])&sixBitsMask)<<20
+ f.n[3] = uint32(b[22])>>6 | uint32(b[21])<<2 | uint32(b[20])<<10 |
+ uint32(b[19])<<18
+ f.n[4] = uint32(b[18]) | uint32(b[17])<<8 | uint32(b[16])<<16 |
+ (uint32(b[15])&twoBitsMask)<<24
+ f.n[5] = uint32(b[15])>>2 | uint32(b[14])<<6 | uint32(b[13])<<14 |
+ (uint32(b[12])&fourBitsMask)<<22
+ f.n[6] = uint32(b[12])>>4 | uint32(b[11])<<4 | uint32(b[10])<<12 |
+ (uint32(b[9])&sixBitsMask)<<20
+ f.n[7] = uint32(b[9])>>6 | uint32(b[8])<<2 | uint32(b[7])<<10 |
+ uint32(b[6])<<18
+ f.n[8] = uint32(b[5]) | uint32(b[4])<<8 | uint32(b[3])<<16 |
+ (uint32(b[2])&twoBitsMask)<<24
+ f.n[9] = uint32(b[2])>>2 | uint32(b[1])<<6 | uint32(b[0])<<14
+
+ // The intuition here is that the field value is greater than the prime if
+ // one of the higher individual words is greater than corresponding word of
+ // the prime and all higher words in the field value are equal to their
+ // corresponding word of the prime. Since this type is modulo the prime,
+ // being equal is also an overflow back to 0.
+ //
+ // Note that because the input is 32 bytes and it was just packed into the
+ // field representation, the only words that can possibly be greater are
+ // zero and one, because ceil(log_2(2^256 - 1 - P)) = 33 bits max and the
+ // internal field representation encodes 26 bits with each word.
+ //
+ // Thus, there is no need to test if the upper words of the field value
+ // exceeds them, hence, only equality is checked for them.
+ highWordsEq := constantTimeEq(f.n[9], fieldPrimeWordNine)
+ highWordsEq &= constantTimeEq(f.n[8], fieldPrimeWordEight)
+ highWordsEq &= constantTimeEq(f.n[7], fieldPrimeWordSeven)
+ highWordsEq &= constantTimeEq(f.n[6], fieldPrimeWordSix)
+ highWordsEq &= constantTimeEq(f.n[5], fieldPrimeWordFive)
+ highWordsEq &= constantTimeEq(f.n[4], fieldPrimeWordFour)
+ highWordsEq &= constantTimeEq(f.n[3], fieldPrimeWordThree)
+ highWordsEq &= constantTimeEq(f.n[2], fieldPrimeWordTwo)
+ overflow := highWordsEq & constantTimeGreater(f.n[1], fieldPrimeWordOne)
+ highWordsEq &= constantTimeEq(f.n[1], fieldPrimeWordOne)
+ overflow |= highWordsEq & constantTimeGreaterOrEq(f.n[0], fieldPrimeWordZero)
+
+ return overflow
+}
+
+// SetByteSlice interprets the provided slice as a 256-bit big-endian unsigned
+// integer (meaning it is truncated to the first 32 bytes), packs it into the
+// internal field value representation, and returns whether or not the resulting
+// truncated 256-bit integer is greater than or equal to the field prime (aka it
+// overflowed) in constant time.
+//
+// Note that since passing a slice with more than 32 bytes is truncated, it is
+// possible that the truncated value is less than the field prime and hence it
+// will not be reported as having overflowed in that case. It is up to the
+// caller to decide whether it needs to provide numbers of the appropriate size
+// or it if is acceptable to use this function with the described truncation and
+// overflow behavior.
+//
+// Preconditions: None
+// Output Normalized: Yes if no overflow, no otherwise
+// Output Max Magnitude: 1
+func (f *FieldVal) SetByteSlice(b []byte) bool {
+ var b32 [32]byte
+ b = b[:constantTimeMin(uint32(len(b)), 32)]
+ copy(b32[:], b32[:32-len(b)])
+ copy(b32[32-len(b):], b)
+ result := f.SetBytes(&b32)
+ zeroArray32(&b32)
+ return result != 0
+}
+
+// Normalize normalizes the internal field words into the desired range and
+// performs fast modular reduction over the secp256k1 prime by making use of the
+// special form of the prime in constant time.
+//
+// Preconditions: None
+// Output Normalized: Yes
+// Output Max Magnitude: 1
+func (f *FieldVal) Normalize() *FieldVal {
+ // The field representation leaves 6 bits of overflow in each word so
+ // intermediate calculations can be performed without needing to
+ // propagate the carry to each higher word during the calculations. In
+ // order to normalize, we need to "compact" the full 256-bit value to
+ // the right while propagating any carries through to the high order
+ // word.
+ //
+ // Since this field is doing arithmetic modulo the secp256k1 prime, we
+ // also need to perform modular reduction over the prime.
+ //
+ // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
+ // when the modulus is of the special form m = b^t - c, highly efficient
+ // reduction can be achieved.
+ //
+ // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
+ // this criteria.
+ //
+ // 4294968273 in field representation (base 2^26) is:
+ // n[0] = 977
+ // n[1] = 64
+ // That is to say (2^26 * 64) + 977 = 4294968273
+ //
+ // The algorithm presented in the referenced section typically repeats
+ // until the quotient is zero. However, due to our field representation
+ // we already know to within one reduction how many times we would need
+ // to repeat as it's the uppermost bits of the high order word. Thus we
+ // can simply multiply the magnitude by the field representation of the
+ // prime and do a single iteration. After this step there might be an
+ // additional carry to bit 256 (bit 22 of the high order word).
+ t9 := f.n[9]
+ m := t9 >> fieldMSBBits
+ t9 = t9 & fieldMSBMask
+ t0 := f.n[0] + m*977
+ t1 := (t0 >> fieldBase) + f.n[1] + (m << 6)
+ t0 = t0 & fieldBaseMask
+ t2 := (t1 >> fieldBase) + f.n[2]
+ t1 = t1 & fieldBaseMask
+ t3 := (t2 >> fieldBase) + f.n[3]
+ t2 = t2 & fieldBaseMask
+ t4 := (t3 >> fieldBase) + f.n[4]
+ t3 = t3 & fieldBaseMask
+ t5 := (t4 >> fieldBase) + f.n[5]
+ t4 = t4 & fieldBaseMask
+ t6 := (t5 >> fieldBase) + f.n[6]
+ t5 = t5 & fieldBaseMask
+ t7 := (t6 >> fieldBase) + f.n[7]
+ t6 = t6 & fieldBaseMask
+ t8 := (t7 >> fieldBase) + f.n[8]
+ t7 = t7 & fieldBaseMask
+ t9 = (t8 >> fieldBase) + t9
+ t8 = t8 & fieldBaseMask
+
+ // At this point, the magnitude is guaranteed to be one, however, the
+ // value could still be greater than the prime if there was either a
+ // carry through to bit 256 (bit 22 of the higher order word) or the
+ // value is greater than or equal to the field characteristic. The
+ // following determines if either or these conditions are true and does
+ // the final reduction in constant time.
+ //
+ // Also note that 'm' will be zero when neither of the aforementioned
+ // conditions are true and the value will not be changed when 'm' is zero.
+ m = constantTimeEq(t9, fieldMSBMask)
+ m &= constantTimeEq(t8&t7&t6&t5&t4&t3&t2, fieldBaseMask)
+ m &= constantTimeGreater(t1+64+((t0+977)>>fieldBase), fieldBaseMask)
+ m |= t9 >> fieldMSBBits
+ t0 = t0 + m*977
+ t1 = (t0 >> fieldBase) + t1 + (m << 6)
+ t0 = t0 & fieldBaseMask
+ t2 = (t1 >> fieldBase) + t2
+ t1 = t1 & fieldBaseMask
+ t3 = (t2 >> fieldBase) + t3
+ t2 = t2 & fieldBaseMask
+ t4 = (t3 >> fieldBase) + t4
+ t3 = t3 & fieldBaseMask
+ t5 = (t4 >> fieldBase) + t5
+ t4 = t4 & fieldBaseMask
+ t6 = (t5 >> fieldBase) + t6
+ t5 = t5 & fieldBaseMask
+ t7 = (t6 >> fieldBase) + t7
+ t6 = t6 & fieldBaseMask
+ t8 = (t7 >> fieldBase) + t8
+ t7 = t7 & fieldBaseMask
+ t9 = (t8 >> fieldBase) + t9
+ t8 = t8 & fieldBaseMask
+ t9 = t9 & fieldMSBMask // Remove potential multiple of 2^256.
+
+ // Finally, set the normalized and reduced words.
+ f.n[0] = t0
+ f.n[1] = t1
+ f.n[2] = t2
+ f.n[3] = t3
+ f.n[4] = t4
+ f.n[5] = t5
+ f.n[6] = t6
+ f.n[7] = t7
+ f.n[8] = t8
+ f.n[9] = t9
+ return f
+}
+
+// PutBytesUnchecked unpacks the field value to a 32-byte big-endian value
+// directly into the passed byte slice in constant time. The target slice must
+// must have at least 32 bytes available or it will panic.
+//
+// There is a similar function, PutBytes, which unpacks the field value into a
+// 32-byte array directly. This version is provided since it can be useful
+// to write directly into part of a larger buffer without needing a separate
+// allocation.
+//
+// Preconditions:
+// - The field value MUST be normalized
+// - The target slice MUST have at least 32 bytes available
+func (f *FieldVal) PutBytesUnchecked(b []byte) {
+ // Unpack the 256 total bits from the 10 uint32 words with a max of
+ // 26-bits per word. This could be done with a couple of for loops,
+ // but this unrolled version is a bit faster. Benchmarks show this is
+ // about 10 times faster than the variant which uses loops.
+ b[31] = byte(f.n[0] & eightBitsMask)
+ b[30] = byte((f.n[0] >> 8) & eightBitsMask)
+ b[29] = byte((f.n[0] >> 16) & eightBitsMask)
+ b[28] = byte((f.n[0]>>24)&twoBitsMask | (f.n[1]&sixBitsMask)<<2)
+ b[27] = byte((f.n[1] >> 6) & eightBitsMask)
+ b[26] = byte((f.n[1] >> 14) & eightBitsMask)
+ b[25] = byte((f.n[1]>>22)&fourBitsMask | (f.n[2]&fourBitsMask)<<4)
+ b[24] = byte((f.n[2] >> 4) & eightBitsMask)
+ b[23] = byte((f.n[2] >> 12) & eightBitsMask)
+ b[22] = byte((f.n[2]>>20)&sixBitsMask | (f.n[3]&twoBitsMask)<<6)
+ b[21] = byte((f.n[3] >> 2) & eightBitsMask)
+ b[20] = byte((f.n[3] >> 10) & eightBitsMask)
+ b[19] = byte((f.n[3] >> 18) & eightBitsMask)
+ b[18] = byte(f.n[4] & eightBitsMask)
+ b[17] = byte((f.n[4] >> 8) & eightBitsMask)
+ b[16] = byte((f.n[4] >> 16) & eightBitsMask)
+ b[15] = byte((f.n[4]>>24)&twoBitsMask | (f.n[5]&sixBitsMask)<<2)
+ b[14] = byte((f.n[5] >> 6) & eightBitsMask)
+ b[13] = byte((f.n[5] >> 14) & eightBitsMask)
+ b[12] = byte((f.n[5]>>22)&fourBitsMask | (f.n[6]&fourBitsMask)<<4)
+ b[11] = byte((f.n[6] >> 4) & eightBitsMask)
+ b[10] = byte((f.n[6] >> 12) & eightBitsMask)
+ b[9] = byte((f.n[6]>>20)&sixBitsMask | (f.n[7]&twoBitsMask)<<6)
+ b[8] = byte((f.n[7] >> 2) & eightBitsMask)
+ b[7] = byte((f.n[7] >> 10) & eightBitsMask)
+ b[6] = byte((f.n[7] >> 18) & eightBitsMask)
+ b[5] = byte(f.n[8] & eightBitsMask)
+ b[4] = byte((f.n[8] >> 8) & eightBitsMask)
+ b[3] = byte((f.n[8] >> 16) & eightBitsMask)
+ b[2] = byte((f.n[8]>>24)&twoBitsMask | (f.n[9]&sixBitsMask)<<2)
+ b[1] = byte((f.n[9] >> 6) & eightBitsMask)
+ b[0] = byte((f.n[9] >> 14) & eightBitsMask)
+}
+
+// PutBytes unpacks the field value to a 32-byte big-endian value using the
+// passed byte array in constant time.
+//
+// There is a similar function, PutBytesUnchecked, which unpacks the field value
+// into a slice that must have at least 32 bytes available. This version is
+// provided since it can be useful to write directly into an array that is type
+// checked.
+//
+// Alternatively, there is also Bytes, which unpacks the field value into a new
+// array and returns that which can sometimes be more ergonomic in applications
+// that aren't concerned about an additional copy.
+//
+// Preconditions:
+// - The field value MUST be normalized
+func (f *FieldVal) PutBytes(b *[32]byte) {
+ f.PutBytesUnchecked(b[:])
+}
+
+// Bytes unpacks the field value to a 32-byte big-endian value in constant time.
+//
+// See PutBytes and PutBytesUnchecked for variants that allow an array or slice
+// to be passed which can be useful to cut down on the number of allocations by
+// allowing the caller to reuse a buffer or write directly into part of a larger
+// buffer.
+//
+// Preconditions:
+// - The field value MUST be normalized
+func (f *FieldVal) Bytes() *[32]byte {
+ b := new([32]byte)
+ f.PutBytesUnchecked(b[:])
+ return b
+}
+
+// IsZeroBit returns 1 when the field value is equal to zero or 0 otherwise in
+// constant time.
+//
+// Note that a bool is not used here because it is not possible in Go to convert
+// from a bool to numeric value in constant time and many constant-time
+// operations require a numeric value. See IsZero for the version that returns
+// a bool.
+//
+// Preconditions:
+// - The field value MUST be normalized
+func (f *FieldVal) IsZeroBit() uint32 {
+ // The value can only be zero if no bits are set in any of the words.
+ // This is a constant time implementation.
+ bits := f.n[0] | f.n[1] | f.n[2] | f.n[3] | f.n[4] |
+ f.n[5] | f.n[6] | f.n[7] | f.n[8] | f.n[9]
+
+ return constantTimeEq(bits, 0)
+}
+
+// IsZero returns whether or not the field value is equal to zero in constant
+// time.
+//
+// Preconditions:
+// - The field value MUST be normalized
+func (f *FieldVal) IsZero() bool {
+ // The value can only be zero if no bits are set in any of the words.
+ // This is a constant time implementation.
+ bits := f.n[0] | f.n[1] | f.n[2] | f.n[3] | f.n[4] |
+ f.n[5] | f.n[6] | f.n[7] | f.n[8] | f.n[9]
+
+ return bits == 0
+}
+
+// IsOneBit returns 1 when the field value is equal to one or 0 otherwise in
+// constant time.
+//
+// Note that a bool is not used here because it is not possible in Go to convert
+// from a bool to numeric value in constant time and many constant-time
+// operations require a numeric value. See IsOne for the version that returns a
+// bool.
+//
+// Preconditions:
+// - The field value MUST be normalized
+func (f *FieldVal) IsOneBit() uint32 {
+ // The value can only be one if the single lowest significant bit is set in
+ // the first word and no other bits are set in any of the other words.
+ // This is a constant time implementation.
+ bits := (f.n[0] ^ 1) | f.n[1] | f.n[2] | f.n[3] | f.n[4] | f.n[5] |
+ f.n[6] | f.n[7] | f.n[8] | f.n[9]
+
+ return constantTimeEq(bits, 0)
+}
+
+// IsOne returns whether or not the field value is equal to one in constant
+// time.
+//
+// Preconditions:
+// - The field value MUST be normalized
+func (f *FieldVal) IsOne() bool {
+ // The value can only be one if the single lowest significant bit is set in
+ // the first word and no other bits are set in any of the other words.
+ // This is a constant time implementation.
+ bits := (f.n[0] ^ 1) | f.n[1] | f.n[2] | f.n[3] | f.n[4] | f.n[5] |
+ f.n[6] | f.n[7] | f.n[8] | f.n[9]
+
+ return bits == 0
+}
+
+// IsOddBit returns 1 when the field value is an odd number or 0 otherwise in
+// constant time.
+//
+// Note that a bool is not used here because it is not possible in Go to convert
+// from a bool to numeric value in constant time and many constant-time
+// operations require a numeric value. See IsOdd for the version that returns a
+// bool.
+//
+// Preconditions:
+// - The field value MUST be normalized
+func (f *FieldVal) IsOddBit() uint32 {
+ // Only odd numbers have the bottom bit set.
+ return f.n[0] & 1
+}
+
+// IsOdd returns whether or not the field value is an odd number in constant
+// time.
+//
+// Preconditions:
+// - The field value MUST be normalized
+func (f *FieldVal) IsOdd() bool {
+ // Only odd numbers have the bottom bit set.
+ return f.n[0]&1 == 1
+}
+
+// Equals returns whether or not the two field values are the same in constant
+// time.
+//
+// Preconditions:
+// - Both field values being compared MUST be normalized
+func (f *FieldVal) Equals(val *FieldVal) bool {
+ // Xor only sets bits when they are different, so the two field values
+ // can only be the same if no bits are set after xoring each word.
+ // This is a constant time implementation.
+ bits := (f.n[0] ^ val.n[0]) | (f.n[1] ^ val.n[1]) | (f.n[2] ^ val.n[2]) |
+ (f.n[3] ^ val.n[3]) | (f.n[4] ^ val.n[4]) | (f.n[5] ^ val.n[5]) |
+ (f.n[6] ^ val.n[6]) | (f.n[7] ^ val.n[7]) | (f.n[8] ^ val.n[8]) |
+ (f.n[9] ^ val.n[9])
+
+ return bits == 0
+}
+
+// NegateVal negates the passed value and stores the result in f in constant
+// time. The caller must provide the magnitude of the passed value for a
+// correct result.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.NegateVal(f2).AddInt(1) so that f = -f2 + 1.
+//
+// Preconditions:
+// - The max magnitude MUST be 63
+// Output Normalized: No
+// Output Max Magnitude: Input magnitude + 1
+func (f *FieldVal) NegateVal(val *FieldVal, magnitude uint32) *FieldVal {
+ // Negation in the field is just the prime minus the value. However,
+ // in order to allow negation against a field value without having to
+ // normalize/reduce it first, multiply by the magnitude (that is how
+ // "far" away it is from the normalized value) to adjust. Also, since
+ // negating a value pushes it one more order of magnitude away from the
+ // normalized range, add 1 to compensate.
+ //
+ // For some intuition here, imagine you're performing mod 12 arithmetic
+ // (picture a clock) and you are negating the number 7. So you start at
+ // 12 (which is of course 0 under mod 12) and count backwards (left on
+ // the clock) 7 times to arrive at 5. Notice this is just 12-7 = 5.
+ // Now, assume you're starting with 19, which is a number that is
+ // already larger than the modulus and congruent to 7 (mod 12). When a
+ // value is already in the desired range, its magnitude is 1. Since 19
+ // is an additional "step", its magnitude (mod 12) is 2. Since any
+ // multiple of the modulus is congruent to zero (mod m), the answer can
+ // be shortcut by simply multiplying the magnitude by the modulus and
+ // subtracting. Keeping with the example, this would be (2*12)-19 = 5.
+ f.n[0] = (magnitude+1)*fieldPrimeWordZero - val.n[0]
+ f.n[1] = (magnitude+1)*fieldPrimeWordOne - val.n[1]
+ f.n[2] = (magnitude+1)*fieldBaseMask - val.n[2]
+ f.n[3] = (magnitude+1)*fieldBaseMask - val.n[3]
+ f.n[4] = (magnitude+1)*fieldBaseMask - val.n[4]
+ f.n[5] = (magnitude+1)*fieldBaseMask - val.n[5]
+ f.n[6] = (magnitude+1)*fieldBaseMask - val.n[6]
+ f.n[7] = (magnitude+1)*fieldBaseMask - val.n[7]
+ f.n[8] = (magnitude+1)*fieldBaseMask - val.n[8]
+ f.n[9] = (magnitude+1)*fieldMSBMask - val.n[9]
+
+ return f
+}
+
+// Negate negates the field value in constant time. The existing field value is
+// modified. The caller must provide the magnitude of the field value for a
+// correct result.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Negate().AddInt(1) so that f = -f + 1.
+//
+// Preconditions:
+// - The max magnitude MUST be 63
+// Output Normalized: No
+// Output Max Magnitude: Input magnitude + 1
+func (f *FieldVal) Negate(magnitude uint32) *FieldVal {
+ return f.NegateVal(f, magnitude)
+}
+
+// AddInt adds the passed integer to the existing field value and stores the
+// result in f in constant time. This is a convenience function since it is
+// fairly common to perform some arithmetic with small native integers.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.AddInt(1).Add(f2) so that f = f + 1 + f2.
+//
+// Preconditions:
+// - The field value MUST have a max magnitude of 63
+// Output Normalized: No
+// Output Max Magnitude: Existing field magnitude + 1
+func (f *FieldVal) AddInt(ui uint16) *FieldVal {
+ // Since the field representation intentionally provides overflow bits,
+ // it's ok to use carryless addition as the carry bit is safely part of
+ // the word and will be normalized out.
+ f.n[0] += uint32(ui)
+
+ return f
+}
+
+// Add adds the passed value to the existing field value and stores the result
+// in f in constant time.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Add(f2).AddInt(1) so that f = f + f2 + 1.
+//
+// Preconditions:
+// - The sum of the magnitudes of the two field values MUST be a max of 64
+// Output Normalized: No
+// Output Max Magnitude: Sum of the magnitude of the two individual field values
+func (f *FieldVal) Add(val *FieldVal) *FieldVal {
+ // Since the field representation intentionally provides overflow bits,
+ // it's ok to use carryless addition as the carry bit is safely part of
+ // each word and will be normalized out. This could obviously be done
+ // in a loop, but the unrolled version is faster.
+ f.n[0] += val.n[0]
+ f.n[1] += val.n[1]
+ f.n[2] += val.n[2]
+ f.n[3] += val.n[3]
+ f.n[4] += val.n[4]
+ f.n[5] += val.n[5]
+ f.n[6] += val.n[6]
+ f.n[7] += val.n[7]
+ f.n[8] += val.n[8]
+ f.n[9] += val.n[9]
+
+ return f
+}
+
+// Add2 adds the passed two field values together and stores the result in f in
+// constant time.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f3.Add2(f, f2).AddInt(1) so that f3 = f + f2 + 1.
+//
+// Preconditions:
+// - The sum of the magnitudes of the two field values MUST be a max of 64
+// Output Normalized: No
+// Output Max Magnitude: Sum of the magnitude of the two field values
+func (f *FieldVal) Add2(val *FieldVal, val2 *FieldVal) *FieldVal {
+ // Since the field representation intentionally provides overflow bits,
+ // it's ok to use carryless addition as the carry bit is safely part of
+ // each word and will be normalized out. This could obviously be done
+ // in a loop, but the unrolled version is faster.
+ f.n[0] = val.n[0] + val2.n[0]
+ f.n[1] = val.n[1] + val2.n[1]
+ f.n[2] = val.n[2] + val2.n[2]
+ f.n[3] = val.n[3] + val2.n[3]
+ f.n[4] = val.n[4] + val2.n[4]
+ f.n[5] = val.n[5] + val2.n[5]
+ f.n[6] = val.n[6] + val2.n[6]
+ f.n[7] = val.n[7] + val2.n[7]
+ f.n[8] = val.n[8] + val2.n[8]
+ f.n[9] = val.n[9] + val2.n[9]
+
+ return f
+}
+
+// MulInt multiplies the field value by the passed int and stores the result in
+// f in constant time. Note that this function can overflow if multiplying the
+// value by any of the individual words exceeds a max uint32. Therefore it is
+// important that the caller ensures no overflows will occur before using this
+// function.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.MulInt(2).Add(f2) so that f = 2 * f + f2.
+//
+// Preconditions:
+// - The field value magnitude multiplied by given val MUST be a max of 64
+// Output Normalized: No
+// Output Max Magnitude: Existing field magnitude times the provided integer val
+func (f *FieldVal) MulInt(val uint8) *FieldVal {
+ // Since each word of the field representation can hold up to
+ // 32 - fieldBase extra bits which will be normalized out, it's safe
+ // to multiply each word without using a larger type or carry
+ // propagation so long as the values won't overflow a uint32. This
+ // could obviously be done in a loop, but the unrolled version is
+ // faster.
+ ui := uint32(val)
+ f.n[0] *= ui
+ f.n[1] *= ui
+ f.n[2] *= ui
+ f.n[3] *= ui
+ f.n[4] *= ui
+ f.n[5] *= ui
+ f.n[6] *= ui
+ f.n[7] *= ui
+ f.n[8] *= ui
+ f.n[9] *= ui
+
+ return f
+}
+
+// Mul multiplies the passed value to the existing field value and stores the
+// result in f in constant time. Note that this function can overflow if
+// multiplying any of the individual words exceeds a max uint32. In practice,
+// this means the magnitude of either value involved in the multiplication must
+// be a max of 8.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Mul(f2).AddInt(1) so that f = (f * f2) + 1.
+//
+// Preconditions:
+// - Both field values MUST have a max magnitude of 8
+// Output Normalized: No
+// Output Max Magnitude: 1
+func (f *FieldVal) Mul(val *FieldVal) *FieldVal {
+ return f.Mul2(f, val)
+}
+
+// Mul2 multiplies the passed two field values together and stores the result
+// result in f in constant time. Note that this function can overflow if
+// multiplying any of the individual words exceeds a max uint32. In practice,
+// this means the magnitude of either value involved in the multiplication must
+// be a max of 8.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f3.Mul2(f, f2).AddInt(1) so that f3 = (f * f2) + 1.
+//
+// Preconditions:
+// - Both input field values MUST have a max magnitude of 8
+// Output Normalized: No
+// Output Max Magnitude: 1
+func (f *FieldVal) Mul2(val *FieldVal, val2 *FieldVal) *FieldVal {
+ // This could be done with a couple of for loops and an array to store
+ // the intermediate terms, but this unrolled version is significantly
+ // faster.
+
+ // Terms for 2^(fieldBase*0).
+ m := uint64(val.n[0]) * uint64(val2.n[0])
+ t0 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*1).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[1]) +
+ uint64(val.n[1])*uint64(val2.n[0])
+ t1 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*2).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[2]) +
+ uint64(val.n[1])*uint64(val2.n[1]) +
+ uint64(val.n[2])*uint64(val2.n[0])
+ t2 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*3).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[3]) +
+ uint64(val.n[1])*uint64(val2.n[2]) +
+ uint64(val.n[2])*uint64(val2.n[1]) +
+ uint64(val.n[3])*uint64(val2.n[0])
+ t3 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*4).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[4]) +
+ uint64(val.n[1])*uint64(val2.n[3]) +
+ uint64(val.n[2])*uint64(val2.n[2]) +
+ uint64(val.n[3])*uint64(val2.n[1]) +
+ uint64(val.n[4])*uint64(val2.n[0])
+ t4 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*5).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[5]) +
+ uint64(val.n[1])*uint64(val2.n[4]) +
+ uint64(val.n[2])*uint64(val2.n[3]) +
+ uint64(val.n[3])*uint64(val2.n[2]) +
+ uint64(val.n[4])*uint64(val2.n[1]) +
+ uint64(val.n[5])*uint64(val2.n[0])
+ t5 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*6).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[6]) +
+ uint64(val.n[1])*uint64(val2.n[5]) +
+ uint64(val.n[2])*uint64(val2.n[4]) +
+ uint64(val.n[3])*uint64(val2.n[3]) +
+ uint64(val.n[4])*uint64(val2.n[2]) +
+ uint64(val.n[5])*uint64(val2.n[1]) +
+ uint64(val.n[6])*uint64(val2.n[0])
+ t6 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*7).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[7]) +
+ uint64(val.n[1])*uint64(val2.n[6]) +
+ uint64(val.n[2])*uint64(val2.n[5]) +
+ uint64(val.n[3])*uint64(val2.n[4]) +
+ uint64(val.n[4])*uint64(val2.n[3]) +
+ uint64(val.n[5])*uint64(val2.n[2]) +
+ uint64(val.n[6])*uint64(val2.n[1]) +
+ uint64(val.n[7])*uint64(val2.n[0])
+ t7 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*8).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[8]) +
+ uint64(val.n[1])*uint64(val2.n[7]) +
+ uint64(val.n[2])*uint64(val2.n[6]) +
+ uint64(val.n[3])*uint64(val2.n[5]) +
+ uint64(val.n[4])*uint64(val2.n[4]) +
+ uint64(val.n[5])*uint64(val2.n[3]) +
+ uint64(val.n[6])*uint64(val2.n[2]) +
+ uint64(val.n[7])*uint64(val2.n[1]) +
+ uint64(val.n[8])*uint64(val2.n[0])
+ t8 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*9).
+ m = (m >> fieldBase) +
+ uint64(val.n[0])*uint64(val2.n[9]) +
+ uint64(val.n[1])*uint64(val2.n[8]) +
+ uint64(val.n[2])*uint64(val2.n[7]) +
+ uint64(val.n[3])*uint64(val2.n[6]) +
+ uint64(val.n[4])*uint64(val2.n[5]) +
+ uint64(val.n[5])*uint64(val2.n[4]) +
+ uint64(val.n[6])*uint64(val2.n[3]) +
+ uint64(val.n[7])*uint64(val2.n[2]) +
+ uint64(val.n[8])*uint64(val2.n[1]) +
+ uint64(val.n[9])*uint64(val2.n[0])
+ t9 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*10).
+ m = (m >> fieldBase) +
+ uint64(val.n[1])*uint64(val2.n[9]) +
+ uint64(val.n[2])*uint64(val2.n[8]) +
+ uint64(val.n[3])*uint64(val2.n[7]) +
+ uint64(val.n[4])*uint64(val2.n[6]) +
+ uint64(val.n[5])*uint64(val2.n[5]) +
+ uint64(val.n[6])*uint64(val2.n[4]) +
+ uint64(val.n[7])*uint64(val2.n[3]) +
+ uint64(val.n[8])*uint64(val2.n[2]) +
+ uint64(val.n[9])*uint64(val2.n[1])
+ t10 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*11).
+ m = (m >> fieldBase) +
+ uint64(val.n[2])*uint64(val2.n[9]) +
+ uint64(val.n[3])*uint64(val2.n[8]) +
+ uint64(val.n[4])*uint64(val2.n[7]) +
+ uint64(val.n[5])*uint64(val2.n[6]) +
+ uint64(val.n[6])*uint64(val2.n[5]) +
+ uint64(val.n[7])*uint64(val2.n[4]) +
+ uint64(val.n[8])*uint64(val2.n[3]) +
+ uint64(val.n[9])*uint64(val2.n[2])
+ t11 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*12).
+ m = (m >> fieldBase) +
+ uint64(val.n[3])*uint64(val2.n[9]) +
+ uint64(val.n[4])*uint64(val2.n[8]) +
+ uint64(val.n[5])*uint64(val2.n[7]) +
+ uint64(val.n[6])*uint64(val2.n[6]) +
+ uint64(val.n[7])*uint64(val2.n[5]) +
+ uint64(val.n[8])*uint64(val2.n[4]) +
+ uint64(val.n[9])*uint64(val2.n[3])
+ t12 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*13).
+ m = (m >> fieldBase) +
+ uint64(val.n[4])*uint64(val2.n[9]) +
+ uint64(val.n[5])*uint64(val2.n[8]) +
+ uint64(val.n[6])*uint64(val2.n[7]) +
+ uint64(val.n[7])*uint64(val2.n[6]) +
+ uint64(val.n[8])*uint64(val2.n[5]) +
+ uint64(val.n[9])*uint64(val2.n[4])
+ t13 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*14).
+ m = (m >> fieldBase) +
+ uint64(val.n[5])*uint64(val2.n[9]) +
+ uint64(val.n[6])*uint64(val2.n[8]) +
+ uint64(val.n[7])*uint64(val2.n[7]) +
+ uint64(val.n[8])*uint64(val2.n[6]) +
+ uint64(val.n[9])*uint64(val2.n[5])
+ t14 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*15).
+ m = (m >> fieldBase) +
+ uint64(val.n[6])*uint64(val2.n[9]) +
+ uint64(val.n[7])*uint64(val2.n[8]) +
+ uint64(val.n[8])*uint64(val2.n[7]) +
+ uint64(val.n[9])*uint64(val2.n[6])
+ t15 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*16).
+ m = (m >> fieldBase) +
+ uint64(val.n[7])*uint64(val2.n[9]) +
+ uint64(val.n[8])*uint64(val2.n[8]) +
+ uint64(val.n[9])*uint64(val2.n[7])
+ t16 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*17).
+ m = (m >> fieldBase) +
+ uint64(val.n[8])*uint64(val2.n[9]) +
+ uint64(val.n[9])*uint64(val2.n[8])
+ t17 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*18).
+ m = (m >> fieldBase) + uint64(val.n[9])*uint64(val2.n[9])
+ t18 := m & fieldBaseMask
+
+ // What's left is for 2^(fieldBase*19).
+ t19 := m >> fieldBase
+
+ // At this point, all of the terms are grouped into their respective
+ // base.
+ //
+ // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
+ // when the modulus is of the special form m = b^t - c, highly efficient
+ // reduction can be achieved per the provided algorithm.
+ //
+ // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
+ // this criteria.
+ //
+ // 4294968273 in field representation (base 2^26) is:
+ // n[0] = 977
+ // n[1] = 64
+ // That is to say (2^26 * 64) + 977 = 4294968273
+ //
+ // Since each word is in base 26, the upper terms (t10 and up) start
+ // at 260 bits (versus the final desired range of 256 bits), so the
+ // field representation of 'c' from above needs to be adjusted for the
+ // extra 4 bits by multiplying it by 2^4 = 16. 4294968273 * 16 =
+ // 68719492368. Thus, the adjusted field representation of 'c' is:
+ // n[0] = 977 * 16 = 15632
+ // n[1] = 64 * 16 = 1024
+ // That is to say (2^26 * 1024) + 15632 = 68719492368
+ //
+ // To reduce the final term, t19, the entire 'c' value is needed instead
+ // of only n[0] because there are no more terms left to handle n[1].
+ // This means there might be some magnitude left in the upper bits that
+ // is handled below.
+ m = t0 + t10*15632
+ t0 = m & fieldBaseMask
+ m = (m >> fieldBase) + t1 + t10*1024 + t11*15632
+ t1 = m & fieldBaseMask
+ m = (m >> fieldBase) + t2 + t11*1024 + t12*15632
+ t2 = m & fieldBaseMask
+ m = (m >> fieldBase) + t3 + t12*1024 + t13*15632
+ t3 = m & fieldBaseMask
+ m = (m >> fieldBase) + t4 + t13*1024 + t14*15632
+ t4 = m & fieldBaseMask
+ m = (m >> fieldBase) + t5 + t14*1024 + t15*15632
+ t5 = m & fieldBaseMask
+ m = (m >> fieldBase) + t6 + t15*1024 + t16*15632
+ t6 = m & fieldBaseMask
+ m = (m >> fieldBase) + t7 + t16*1024 + t17*15632
+ t7 = m & fieldBaseMask
+ m = (m >> fieldBase) + t8 + t17*1024 + t18*15632
+ t8 = m & fieldBaseMask
+ m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368
+ t9 = m & fieldMSBMask
+ m = m >> fieldMSBBits
+
+ // At this point, if the magnitude is greater than 0, the overall value
+ // is greater than the max possible 256-bit value. In particular, it is
+ // "how many times larger" than the max value it is.
+ //
+ // The algorithm presented in [HAC] section 14.3.4 repeats until the
+ // quotient is zero. However, due to the above, we already know at
+ // least how many times we would need to repeat as it's the value
+ // currently in m. Thus we can simply multiply the magnitude by the
+ // field representation of the prime and do a single iteration. Notice
+ // that nothing will be changed when the magnitude is zero, so we could
+ // skip this in that case, however always running regardless allows it
+ // to run in constant time. The final result will be in the range
+ // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a
+ // magnitude of 1, but it is denormalized.
+ d := t0 + m*977
+ f.n[0] = uint32(d & fieldBaseMask)
+ d = (d >> fieldBase) + t1 + m*64
+ f.n[1] = uint32(d & fieldBaseMask)
+ f.n[2] = uint32((d >> fieldBase) + t2)
+ f.n[3] = uint32(t3)
+ f.n[4] = uint32(t4)
+ f.n[5] = uint32(t5)
+ f.n[6] = uint32(t6)
+ f.n[7] = uint32(t7)
+ f.n[8] = uint32(t8)
+ f.n[9] = uint32(t9)
+
+ return f
+}
+
+// SquareRootVal either calculates the square root of the passed value when it
+// exists or the square root of the negation of the value when it does not exist
+// and stores the result in f in constant time. The return flag is true when
+// the calculated square root is for the passed value itself and false when it
+// is for its negation.
+//
+// Note that this function can overflow if multiplying any of the individual
+// words exceeds a max uint32. In practice, this means the magnitude of the
+// field must be a max of 8 to prevent overflow. The magnitude of the result
+// will be 1.
+//
+// Preconditions:
+// - The input field value MUST have a max magnitude of 8
+// Output Normalized: No
+// Output Max Magnitude: 1
+func (f *FieldVal) SquareRootVal(val *FieldVal) bool {
+ // This uses the Tonelli-Shanks method for calculating the square root of
+ // the value when it exists. The key principles of the method follow.
+ //
+ // Fermat's little theorem states that for a nonzero number 'a' and prime
+ // 'p', a^(p-1) ≡ 1 (mod p).
+ //
+ // Further, Euler's criterion states that an integer 'a' has a square root
+ // (aka is a quadratic residue) modulo a prime if a^((p-1)/2) ≡ 1 (mod p)
+ // and, conversely, when it does NOT have a square root (aka 'a' is a
+ // non-residue) a^((p-1)/2) ≡ -1 (mod p).
+ //
+ // This can be seen by considering that Fermat's little theorem can be
+ // written as (a^((p-1)/2) - 1)(a^((p-1)/2) + 1) ≡ 0 (mod p). Therefore,
+ // one of the two factors must be 0. Then, when a ≡ x^2 (aka 'a' is a
+ // quadratic residue), (x^2)^((p-1)/2) ≡ x^(p-1) ≡ 1 (mod p) which implies
+ // the first factor must be zero. Finally, per Lagrange's theorem, the
+ // non-residues are the only remaining possible solutions and thus must make
+ // the second factor zero to satisfy Fermat's little theorem implying that
+ // a^((p-1)/2) ≡ -1 (mod p) for that case.
+ //
+ // The Tonelli-Shanks method uses these facts along with factoring out
+ // powers of two to solve a congruence that results in either the solution
+ // when the square root exists or the square root of the negation of the
+ // value when it does not. In the case of primes that are ≡ 3 (mod 4), the
+ // possible solutions are r = ±a^((p+1)/4) (mod p). Therefore, either r^2 ≡
+ // a (mod p) is true in which case ±r are the two solutions, or r^2 ≡ -a
+ // (mod p) in which case 'a' is a non-residue and there are no solutions.
+ //
+ // The secp256k1 prime is ≡ 3 (mod 4), so this result applies.
+ //
+ // In other words, calculate a^((p+1)/4) and then square it and check it
+ // against the original value to determine if it is actually the square
+ // root.
+ //
+ // In order to efficiently compute a^((p+1)/4), (p+1)/4 needs to be split
+ // into a sequence of squares and multiplications that minimizes the number
+ // of multiplications needed (since they are more costly than squarings).
+ //
+ // The secp256k1 prime + 1 / 4 is 2^254 - 2^30 - 244. In binary, that is:
+ //
+ // 00111111 11111111 11111111 11111111
+ // 11111111 11111111 11111111 11111111
+ // 11111111 11111111 11111111 11111111
+ // 11111111 11111111 11111111 11111111
+ // 11111111 11111111 11111111 11111111
+ // 11111111 11111111 11111111 11111111
+ // 11111111 11111111 11111111 11111111
+ // 10111111 11111111 11111111 00001100
+ //
+ // Notice that can be broken up into three windows of consecutive 1s (in
+ // order of least to most signifcant) as:
+ //
+ // 6-bit window with two bits set (bits 4, 5, 6, 7 unset)
+ // 23-bit window with 22 bits set (bit 30 unset)
+ // 223-bit window with all 223 bits set
+ //
+ // Thus, the groups of 1 bits in each window forms the set:
+ // S = {2, 22, 223}.
+ //
+ // The strategy is to calculate a^(2^n - 1) for each grouping via an
+ // addition chain with a sliding window.
+ //
+ // The addition chain used is (credits to Peter Dettman):
+ // (0,0),(1,0),(2,2),(3,2),(4,1),(5,5),(6,6),(7,7),(8,8),(9,7),(10,2)
+ // => 2^1 2^[2] 2^3 2^6 2^9 2^11 2^[22] 2^44 2^88 2^176 2^220 2^[223]
+ //
+ // This has a cost of 254 field squarings and 13 field multiplications.
+ var a, a2, a3, a6, a9, a11, a22, a44, a88, a176, a220, a223 FieldVal
+ a.Set(val)
+ a2.SquareVal(&a).Mul(&a) // a2 = a^(2^2 - 1)
+ a3.SquareVal(&a2).Mul(&a) // a3 = a^(2^3 - 1)
+ a6.SquareVal(&a3).Square().Square() // a6 = a^(2^6 - 2^3)
+ a6.Mul(&a3) // a6 = a^(2^6 - 1)
+ a9.SquareVal(&a6).Square().Square() // a9 = a^(2^9 - 2^3)
+ a9.Mul(&a3) // a9 = a^(2^9 - 1)
+ a11.SquareVal(&a9).Square() // a11 = a^(2^11 - 2^2)
+ a11.Mul(&a2) // a11 = a^(2^11 - 1)
+ a22.SquareVal(&a11).Square().Square().Square().Square() // a22 = a^(2^16 - 2^5)
+ a22.Square().Square().Square().Square().Square() // a22 = a^(2^21 - 2^10)
+ a22.Square() // a22 = a^(2^22 - 2^11)
+ a22.Mul(&a11) // a22 = a^(2^22 - 1)
+ a44.SquareVal(&a22).Square().Square().Square().Square() // a44 = a^(2^27 - 2^5)
+ a44.Square().Square().Square().Square().Square() // a44 = a^(2^32 - 2^10)
+ a44.Square().Square().Square().Square().Square() // a44 = a^(2^37 - 2^15)
+ a44.Square().Square().Square().Square().Square() // a44 = a^(2^42 - 2^20)
+ a44.Square().Square() // a44 = a^(2^44 - 2^22)
+ a44.Mul(&a22) // a44 = a^(2^44 - 1)
+ a88.SquareVal(&a44).Square().Square().Square().Square() // a88 = a^(2^49 - 2^5)
+ a88.Square().Square().Square().Square().Square() // a88 = a^(2^54 - 2^10)
+ a88.Square().Square().Square().Square().Square() // a88 = a^(2^59 - 2^15)
+ a88.Square().Square().Square().Square().Square() // a88 = a^(2^64 - 2^20)
+ a88.Square().Square().Square().Square().Square() // a88 = a^(2^69 - 2^25)
+ a88.Square().Square().Square().Square().Square() // a88 = a^(2^74 - 2^30)
+ a88.Square().Square().Square().Square().Square() // a88 = a^(2^79 - 2^35)
+ a88.Square().Square().Square().Square().Square() // a88 = a^(2^84 - 2^40)
+ a88.Square().Square().Square().Square() // a88 = a^(2^88 - 2^44)
+ a88.Mul(&a44) // a88 = a^(2^88 - 1)
+ a176.SquareVal(&a88).Square().Square().Square().Square() // a176 = a^(2^93 - 2^5)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^98 - 2^10)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^103 - 2^15)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^108 - 2^20)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^113 - 2^25)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^118 - 2^30)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^123 - 2^35)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^128 - 2^40)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^133 - 2^45)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^138 - 2^50)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^143 - 2^55)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^148 - 2^60)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^153 - 2^65)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^158 - 2^70)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^163 - 2^75)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^168 - 2^80)
+ a176.Square().Square().Square().Square().Square() // a176 = a^(2^173 - 2^85)
+ a176.Square().Square().Square() // a176 = a^(2^176 - 2^88)
+ a176.Mul(&a88) // a176 = a^(2^176 - 1)
+ a220.SquareVal(&a176).Square().Square().Square().Square() // a220 = a^(2^181 - 2^5)
+ a220.Square().Square().Square().Square().Square() // a220 = a^(2^186 - 2^10)
+ a220.Square().Square().Square().Square().Square() // a220 = a^(2^191 - 2^15)
+ a220.Square().Square().Square().Square().Square() // a220 = a^(2^196 - 2^20)
+ a220.Square().Square().Square().Square().Square() // a220 = a^(2^201 - 2^25)
+ a220.Square().Square().Square().Square().Square() // a220 = a^(2^206 - 2^30)
+ a220.Square().Square().Square().Square().Square() // a220 = a^(2^211 - 2^35)
+ a220.Square().Square().Square().Square().Square() // a220 = a^(2^216 - 2^40)
+ a220.Square().Square().Square().Square() // a220 = a^(2^220 - 2^44)
+ a220.Mul(&a44) // a220 = a^(2^220 - 1)
+ a223.SquareVal(&a220).Square().Square() // a223 = a^(2^223 - 2^3)
+ a223.Mul(&a3) // a223 = a^(2^223 - 1)
+
+ f.SquareVal(&a223).Square().Square().Square().Square() // f = a^(2^228 - 2^5)
+ f.Square().Square().Square().Square().Square() // f = a^(2^233 - 2^10)
+ f.Square().Square().Square().Square().Square() // f = a^(2^238 - 2^15)
+ f.Square().Square().Square().Square().Square() // f = a^(2^243 - 2^20)
+ f.Square().Square().Square() // f = a^(2^246 - 2^23)
+ f.Mul(&a22) // f = a^(2^246 - 2^22 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^251 - 2^27 - 2^5)
+ f.Square() // f = a^(2^252 - 2^28 - 2^6)
+ f.Mul(&a2) // f = a^(2^252 - 2^28 - 2^6 - 2^1 - 1)
+ f.Square().Square() // f = a^(2^254 - 2^30 - 2^8 - 2^3 - 2^2)
+ // // = a^(2^254 - 2^30 - 244)
+ // // = a^((p+1)/4)
+
+ // Ensure the calculated result is actually the square root by squaring it
+ // and checking against the original value.
+ var sqr FieldVal
+ return sqr.SquareVal(f).Normalize().Equals(val.Normalize())
+}
+
+// Square squares the field value in constant time. The existing field value is
+// modified. Note that this function can overflow if multiplying any of the
+// individual words exceeds a max uint32. In practice, this means the magnitude
+// of the field must be a max of 8 to prevent overflow.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Square().Mul(f2) so that f = f^2 * f2.
+//
+// Preconditions:
+// - The field value MUST have a max magnitude of 8
+// Output Normalized: No
+// Output Max Magnitude: 1
+func (f *FieldVal) Square() *FieldVal {
+ return f.SquareVal(f)
+}
+
+// SquareVal squares the passed value and stores the result in f in constant
+// time. Note that this function can overflow if multiplying any of the
+// individual words exceeds a max uint32. In practice, this means the magnitude
+// of the field being squared must be a max of 8 to prevent overflow.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f3.SquareVal(f).Mul(f) so that f3 = f^2 * f = f^3.
+//
+// Preconditions:
+// - The input field value MUST have a max magnitude of 8
+// Output Normalized: No
+// Output Max Magnitude: 1
+func (f *FieldVal) SquareVal(val *FieldVal) *FieldVal {
+ // This could be done with a couple of for loops and an array to store
+ // the intermediate terms, but this unrolled version is significantly
+ // faster.
+
+ // Terms for 2^(fieldBase*0).
+ m := uint64(val.n[0]) * uint64(val.n[0])
+ t0 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*1).
+ m = (m >> fieldBase) + 2*uint64(val.n[0])*uint64(val.n[1])
+ t1 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*2).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[2]) +
+ uint64(val.n[1])*uint64(val.n[1])
+ t2 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*3).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[3]) +
+ 2*uint64(val.n[1])*uint64(val.n[2])
+ t3 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*4).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[4]) +
+ 2*uint64(val.n[1])*uint64(val.n[3]) +
+ uint64(val.n[2])*uint64(val.n[2])
+ t4 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*5).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[5]) +
+ 2*uint64(val.n[1])*uint64(val.n[4]) +
+ 2*uint64(val.n[2])*uint64(val.n[3])
+ t5 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*6).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[6]) +
+ 2*uint64(val.n[1])*uint64(val.n[5]) +
+ 2*uint64(val.n[2])*uint64(val.n[4]) +
+ uint64(val.n[3])*uint64(val.n[3])
+ t6 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*7).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[7]) +
+ 2*uint64(val.n[1])*uint64(val.n[6]) +
+ 2*uint64(val.n[2])*uint64(val.n[5]) +
+ 2*uint64(val.n[3])*uint64(val.n[4])
+ t7 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*8).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[8]) +
+ 2*uint64(val.n[1])*uint64(val.n[7]) +
+ 2*uint64(val.n[2])*uint64(val.n[6]) +
+ 2*uint64(val.n[3])*uint64(val.n[5]) +
+ uint64(val.n[4])*uint64(val.n[4])
+ t8 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*9).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[0])*uint64(val.n[9]) +
+ 2*uint64(val.n[1])*uint64(val.n[8]) +
+ 2*uint64(val.n[2])*uint64(val.n[7]) +
+ 2*uint64(val.n[3])*uint64(val.n[6]) +
+ 2*uint64(val.n[4])*uint64(val.n[5])
+ t9 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*10).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[1])*uint64(val.n[9]) +
+ 2*uint64(val.n[2])*uint64(val.n[8]) +
+ 2*uint64(val.n[3])*uint64(val.n[7]) +
+ 2*uint64(val.n[4])*uint64(val.n[6]) +
+ uint64(val.n[5])*uint64(val.n[5])
+ t10 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*11).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[2])*uint64(val.n[9]) +
+ 2*uint64(val.n[3])*uint64(val.n[8]) +
+ 2*uint64(val.n[4])*uint64(val.n[7]) +
+ 2*uint64(val.n[5])*uint64(val.n[6])
+ t11 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*12).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[3])*uint64(val.n[9]) +
+ 2*uint64(val.n[4])*uint64(val.n[8]) +
+ 2*uint64(val.n[5])*uint64(val.n[7]) +
+ uint64(val.n[6])*uint64(val.n[6])
+ t12 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*13).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[4])*uint64(val.n[9]) +
+ 2*uint64(val.n[5])*uint64(val.n[8]) +
+ 2*uint64(val.n[6])*uint64(val.n[7])
+ t13 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*14).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[5])*uint64(val.n[9]) +
+ 2*uint64(val.n[6])*uint64(val.n[8]) +
+ uint64(val.n[7])*uint64(val.n[7])
+ t14 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*15).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[6])*uint64(val.n[9]) +
+ 2*uint64(val.n[7])*uint64(val.n[8])
+ t15 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*16).
+ m = (m >> fieldBase) +
+ 2*uint64(val.n[7])*uint64(val.n[9]) +
+ uint64(val.n[8])*uint64(val.n[8])
+ t16 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*17).
+ m = (m >> fieldBase) + 2*uint64(val.n[8])*uint64(val.n[9])
+ t17 := m & fieldBaseMask
+
+ // Terms for 2^(fieldBase*18).
+ m = (m >> fieldBase) + uint64(val.n[9])*uint64(val.n[9])
+ t18 := m & fieldBaseMask
+
+ // What's left is for 2^(fieldBase*19).
+ t19 := m >> fieldBase
+
+ // At this point, all of the terms are grouped into their respective
+ // base.
+ //
+ // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
+ // when the modulus is of the special form m = b^t - c, highly efficient
+ // reduction can be achieved per the provided algorithm.
+ //
+ // The secp256k1 prime is equivalent to 2^256 - 4294968273, so it fits
+ // this criteria.
+ //
+ // 4294968273 in field representation (base 2^26) is:
+ // n[0] = 977
+ // n[1] = 64
+ // That is to say (2^26 * 64) + 977 = 4294968273
+ //
+ // Since each word is in base 26, the upper terms (t10 and up) start
+ // at 260 bits (versus the final desired range of 256 bits), so the
+ // field representation of 'c' from above needs to be adjusted for the
+ // extra 4 bits by multiplying it by 2^4 = 16. 4294968273 * 16 =
+ // 68719492368. Thus, the adjusted field representation of 'c' is:
+ // n[0] = 977 * 16 = 15632
+ // n[1] = 64 * 16 = 1024
+ // That is to say (2^26 * 1024) + 15632 = 68719492368
+ //
+ // To reduce the final term, t19, the entire 'c' value is needed instead
+ // of only n[0] because there are no more terms left to handle n[1].
+ // This means there might be some magnitude left in the upper bits that
+ // is handled below.
+ m = t0 + t10*15632
+ t0 = m & fieldBaseMask
+ m = (m >> fieldBase) + t1 + t10*1024 + t11*15632
+ t1 = m & fieldBaseMask
+ m = (m >> fieldBase) + t2 + t11*1024 + t12*15632
+ t2 = m & fieldBaseMask
+ m = (m >> fieldBase) + t3 + t12*1024 + t13*15632
+ t3 = m & fieldBaseMask
+ m = (m >> fieldBase) + t4 + t13*1024 + t14*15632
+ t4 = m & fieldBaseMask
+ m = (m >> fieldBase) + t5 + t14*1024 + t15*15632
+ t5 = m & fieldBaseMask
+ m = (m >> fieldBase) + t6 + t15*1024 + t16*15632
+ t6 = m & fieldBaseMask
+ m = (m >> fieldBase) + t7 + t16*1024 + t17*15632
+ t7 = m & fieldBaseMask
+ m = (m >> fieldBase) + t8 + t17*1024 + t18*15632
+ t8 = m & fieldBaseMask
+ m = (m >> fieldBase) + t9 + t18*1024 + t19*68719492368
+ t9 = m & fieldMSBMask
+ m = m >> fieldMSBBits
+
+ // At this point, if the magnitude is greater than 0, the overall value
+ // is greater than the max possible 256-bit value. In particular, it is
+ // "how many times larger" than the max value it is.
+ //
+ // The algorithm presented in [HAC] section 14.3.4 repeats until the
+ // quotient is zero. However, due to the above, we already know at
+ // least how many times we would need to repeat as it's the value
+ // currently in m. Thus we can simply multiply the magnitude by the
+ // field representation of the prime and do a single iteration. Notice
+ // that nothing will be changed when the magnitude is zero, so we could
+ // skip this in that case, however always running regardless allows it
+ // to run in constant time. The final result will be in the range
+ // 0 <= result <= prime + (2^64 - c), so it is guaranteed to have a
+ // magnitude of 1, but it is denormalized.
+ n := t0 + m*977
+ f.n[0] = uint32(n & fieldBaseMask)
+ n = (n >> fieldBase) + t1 + m*64
+ f.n[1] = uint32(n & fieldBaseMask)
+ f.n[2] = uint32((n >> fieldBase) + t2)
+ f.n[3] = uint32(t3)
+ f.n[4] = uint32(t4)
+ f.n[5] = uint32(t5)
+ f.n[6] = uint32(t6)
+ f.n[7] = uint32(t7)
+ f.n[8] = uint32(t8)
+ f.n[9] = uint32(t9)
+
+ return f
+}
+
+// Inverse finds the modular multiplicative inverse of the field value in
+// constant time. The existing field value is modified.
+//
+// The field value is returned to support chaining. This enables syntax like:
+// f.Inverse().Mul(f2) so that f = f^-1 * f2.
+//
+// Preconditions:
+// - The field value MUST have a max magnitude of 8
+// Output Normalized: No
+// Output Max Magnitude: 1
+func (f *FieldVal) Inverse() *FieldVal {
+ // Fermat's little theorem states that for a nonzero number a and prime
+ // prime p, a^(p-1) = 1 (mod p). Since the multiplicative inverse is
+ // a*b = 1 (mod p), it follows that b = a*a^(p-2) = a^(p-1) = 1 (mod p).
+ // Thus, a^(p-2) is the multiplicative inverse.
+ //
+ // In order to efficiently compute a^(p-2), p-2 needs to be split into
+ // a sequence of squares and multiplications that minimizes the number
+ // of multiplications needed (since they are more costly than
+ // squarings). Intermediate results are saved and reused as well.
+ //
+ // The secp256k1 prime - 2 is 2^256 - 4294968275.
+ //
+ // This has a cost of 258 field squarings and 33 field multiplications.
+ var a2, a3, a4, a10, a11, a21, a42, a45, a63, a1019, a1023 FieldVal
+ a2.SquareVal(f)
+ a3.Mul2(&a2, f)
+ a4.SquareVal(&a2)
+ a10.SquareVal(&a4).Mul(&a2)
+ a11.Mul2(&a10, f)
+ a21.Mul2(&a10, &a11)
+ a42.SquareVal(&a21)
+ a45.Mul2(&a42, &a3)
+ a63.Mul2(&a42, &a21)
+ a1019.SquareVal(&a63).Square().Square().Square().Mul(&a11)
+ a1023.Mul2(&a1019, &a4)
+ f.Set(&a63) // f = a^(2^6 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^11 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^16 - 1024)
+ f.Mul(&a1023) // f = a^(2^16 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^21 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^26 - 1024)
+ f.Mul(&a1023) // f = a^(2^26 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^31 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^36 - 1024)
+ f.Mul(&a1023) // f = a^(2^36 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^41 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^46 - 1024)
+ f.Mul(&a1023) // f = a^(2^46 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^51 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^56 - 1024)
+ f.Mul(&a1023) // f = a^(2^56 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^61 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^66 - 1024)
+ f.Mul(&a1023) // f = a^(2^66 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^71 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^76 - 1024)
+ f.Mul(&a1023) // f = a^(2^76 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^81 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^86 - 1024)
+ f.Mul(&a1023) // f = a^(2^86 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^91 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^96 - 1024)
+ f.Mul(&a1023) // f = a^(2^96 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^101 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^106 - 1024)
+ f.Mul(&a1023) // f = a^(2^106 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^111 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^116 - 1024)
+ f.Mul(&a1023) // f = a^(2^116 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^121 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^126 - 1024)
+ f.Mul(&a1023) // f = a^(2^126 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^131 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^136 - 1024)
+ f.Mul(&a1023) // f = a^(2^136 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^141 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^146 - 1024)
+ f.Mul(&a1023) // f = a^(2^146 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^151 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^156 - 1024)
+ f.Mul(&a1023) // f = a^(2^156 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^161 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^166 - 1024)
+ f.Mul(&a1023) // f = a^(2^166 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^171 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^176 - 1024)
+ f.Mul(&a1023) // f = a^(2^176 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^181 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^186 - 1024)
+ f.Mul(&a1023) // f = a^(2^186 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^191 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^196 - 1024)
+ f.Mul(&a1023) // f = a^(2^196 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^201 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^206 - 1024)
+ f.Mul(&a1023) // f = a^(2^206 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^211 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^216 - 1024)
+ f.Mul(&a1023) // f = a^(2^216 - 1)
+ f.Square().Square().Square().Square().Square() // f = a^(2^221 - 32)
+ f.Square().Square().Square().Square().Square() // f = a^(2^226 - 1024)
+ f.Mul(&a1019) // f = a^(2^226 - 5)
+ f.Square().Square().Square().Square().Square() // f = a^(2^231 - 160)
+ f.Square().Square().Square().Square().Square() // f = a^(2^236 - 5120)
+ f.Mul(&a1023) // f = a^(2^236 - 4097)
+ f.Square().Square().Square().Square().Square() // f = a^(2^241 - 131104)
+ f.Square().Square().Square().Square().Square() // f = a^(2^246 - 4195328)
+ f.Mul(&a1023) // f = a^(2^246 - 4194305)
+ f.Square().Square().Square().Square().Square() // f = a^(2^251 - 134217760)
+ f.Square().Square().Square().Square().Square() // f = a^(2^256 - 4294968320)
+ return f.Mul(&a45) // f = a^(2^256 - 4294968275) = a^(p-2)
+}
+
+// IsGtOrEqPrimeMinusOrder returns whether or not the field value exceeds the
+// group order divided by 2 in constant time.
+//
+// Preconditions:
+// - The field value MUST be normalized
+func (f *FieldVal) IsGtOrEqPrimeMinusOrder() bool {
+ // The secp256k1 prime is equivalent to 2^256 - 4294968273 and the group
+ // order is 2^256 - 432420386565659656852420866394968145599. Thus,
+ // the prime minus the group order is:
+ // 432420386565659656852420866390673177326
+ //
+ // In hex that is:
+ // 0x00000000 00000000 00000000 00000001 45512319 50b75fc4 402da172 2fc9baee
+ //
+ // Converting that to field representation (base 2^26) is:
+ //
+ // n[0] = 0x03c9baee
+ // n[1] = 0x03685c8b
+ // n[2] = 0x01fc4402
+ // n[3] = 0x006542dd
+ // n[4] = 0x01455123
+ //
+ // This can be verified with the following test code:
+ // pMinusN := new(big.Int).Sub(curveParams.P, curveParams.N)
+ // var fv FieldVal
+ // fv.SetByteSlice(pMinusN.Bytes())
+ // t.Logf("%x", fv.n)
+ //
+ // Outputs: [3c9baee 3685c8b 1fc4402 6542dd 1455123 0 0 0 0 0]
+ const (
+ pMinusNWordZero = 0x03c9baee
+ pMinusNWordOne = 0x03685c8b
+ pMinusNWordTwo = 0x01fc4402
+ pMinusNWordThree = 0x006542dd
+ pMinusNWordFour = 0x01455123
+ pMinusNWordFive = 0x00000000
+ pMinusNWordSix = 0x00000000
+ pMinusNWordSeven = 0x00000000
+ pMinusNWordEight = 0x00000000
+ pMinusNWordNine = 0x00000000
+ )
+
+ // The intuition here is that the value is greater than field prime minus
+ // the group order if one of the higher individual words is greater than the
+ // corresponding word and all higher words in the value are equal.
+ result := constantTimeGreater(f.n[9], pMinusNWordNine)
+ highWordsEqual := constantTimeEq(f.n[9], pMinusNWordNine)
+ result |= highWordsEqual & constantTimeGreater(f.n[8], pMinusNWordEight)
+ highWordsEqual &= constantTimeEq(f.n[8], pMinusNWordEight)
+ result |= highWordsEqual & constantTimeGreater(f.n[7], pMinusNWordSeven)
+ highWordsEqual &= constantTimeEq(f.n[7], pMinusNWordSeven)
+ result |= highWordsEqual & constantTimeGreater(f.n[6], pMinusNWordSix)
+ highWordsEqual &= constantTimeEq(f.n[6], pMinusNWordSix)
+ result |= highWordsEqual & constantTimeGreater(f.n[5], pMinusNWordFive)
+ highWordsEqual &= constantTimeEq(f.n[5], pMinusNWordFive)
+ result |= highWordsEqual & constantTimeGreater(f.n[4], pMinusNWordFour)
+ highWordsEqual &= constantTimeEq(f.n[4], pMinusNWordFour)
+ result |= highWordsEqual & constantTimeGreater(f.n[3], pMinusNWordThree)
+ highWordsEqual &= constantTimeEq(f.n[3], pMinusNWordThree)
+ result |= highWordsEqual & constantTimeGreater(f.n[2], pMinusNWordTwo)
+ highWordsEqual &= constantTimeEq(f.n[2], pMinusNWordTwo)
+ result |= highWordsEqual & constantTimeGreater(f.n[1], pMinusNWordOne)
+ highWordsEqual &= constantTimeEq(f.n[1], pMinusNWordOne)
+ result |= highWordsEqual & constantTimeGreaterOrEq(f.n[0], pMinusNWordZero)
+
+ return result != 0
+}