summaryrefslogtreecommitdiff
path: root/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/modnscalar.go
diff options
context:
space:
mode:
Diffstat (limited to 'cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/modnscalar.go')
-rw-r--r--cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/modnscalar.go1088
1 files changed, 1088 insertions, 0 deletions
diff --git a/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/modnscalar.go b/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/modnscalar.go
new file mode 100644
index 0000000..8125d9a
--- /dev/null
+++ b/cli/vendor/github.com/decred/dcrd/dcrec/secp256k1/v4/modnscalar.go
@@ -0,0 +1,1088 @@
+// Copyright (c) 2020 The Decred developers
+// Use of this source code is governed by an ISC
+// license that can be found in the LICENSE file.
+
+package secp256k1
+
+import (
+ "encoding/hex"
+ "math/big"
+)
+
+// References:
+// [SECG]: Recommended Elliptic Curve Domain Parameters
+// https://www.secg.org/sec2-v2.pdf
+//
+// [HAC]: Handbook of Applied Cryptography Menezes, van Oorschot, Vanstone.
+// http://cacr.uwaterloo.ca/hac/
+
+// Many elliptic curve operations require working with scalars in a finite field
+// characterized by the order of the group underlying the secp256k1 curve.
+// Given this precision is larger than the biggest available native type,
+// obviously some form of bignum math is needed. This code implements
+// specialized fixed-precision field arithmetic rather than relying on an
+// arbitrary-precision arithmetic package such as math/big for dealing with the
+// math modulo the group order since the size is known. As a result, rather
+// large performance gains are achieved by taking advantage of many
+// optimizations not available to arbitrary-precision arithmetic and generic
+// modular arithmetic algorithms.
+//
+// There are various ways to internally represent each element. For example,
+// the most obvious representation would be to use an array of 4 uint64s (64
+// bits * 4 = 256 bits). However, that representation suffers from the fact
+// that there is no native Go type large enough to handle the intermediate
+// results while adding or multiplying two 64-bit numbers.
+//
+// Given the above, this implementation represents the field elements as 8
+// uint32s with each word (array entry) treated as base 2^32. This was chosen
+// because most systems at the current time are 64-bit (or at least have 64-bit
+// registers available for specialized purposes such as MMX) so the intermediate
+// results can typically be done using a native register (and using uint64s to
+// avoid the need for additional half-word arithmetic)
+
+const (
+ // These fields provide convenient access to each of the words of the
+ // secp256k1 curve group order N to improve code readability.
+ //
+ // The group order of the curve per [SECG] is:
+ // 0xffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141
+ orderWordZero uint32 = 0xd0364141
+ orderWordOne uint32 = 0xbfd25e8c
+ orderWordTwo uint32 = 0xaf48a03b
+ orderWordThree uint32 = 0xbaaedce6
+ orderWordFour uint32 = 0xfffffffe
+ orderWordFive uint32 = 0xffffffff
+ orderWordSix uint32 = 0xffffffff
+ orderWordSeven uint32 = 0xffffffff
+
+ // These fields provide convenient access to each of the words of the two's
+ // complement of the secp256k1 curve group order N to improve code
+ // readability.
+ //
+ // The two's complement of the group order is:
+ // 0x00000000 00000000 00000000 00000001 45512319 50b75fc4 402da173 2fc9bebf
+ orderComplementWordZero uint32 = (^orderWordZero) + 1
+ orderComplementWordOne uint32 = ^orderWordOne
+ orderComplementWordTwo uint32 = ^orderWordTwo
+ orderComplementWordThree uint32 = ^orderWordThree
+ //orderComplementWordFour uint32 = ^orderWordFour // unused
+ //orderComplementWordFive uint32 = ^orderWordFive // unused
+ //orderComplementWordSix uint32 = ^orderWordSix // unused
+ //orderComplementWordSeven uint32 = ^orderWordSeven // unused
+
+ // These fields provide convenient access to each of the words of the
+ // secp256k1 curve group order N / 2 to improve code readability and avoid
+ // the need to recalculate them.
+ //
+ // The half order of the secp256k1 curve group is:
+ // 0x7fffffff ffffffff ffffffff ffffffff 5d576e73 57a4501d dfe92f46 681b20a0
+ halfOrderWordZero uint32 = 0x681b20a0
+ halfOrderWordOne uint32 = 0xdfe92f46
+ halfOrderWordTwo uint32 = 0x57a4501d
+ halfOrderWordThree uint32 = 0x5d576e73
+ halfOrderWordFour uint32 = 0xffffffff
+ halfOrderWordFive uint32 = 0xffffffff
+ halfOrderWordSix uint32 = 0xffffffff
+ halfOrderWordSeven uint32 = 0x7fffffff
+
+ // uint32Mask is simply a mask with all bits set for a uint32 and is used to
+ // improve the readability of the code.
+ uint32Mask = 0xffffffff
+)
+
+var (
+ // zero32 is an array of 32 bytes used for the purposes of zeroing and is
+ // defined here to avoid extra allocations.
+ zero32 = [32]byte{}
+)
+
+// ModNScalar implements optimized 256-bit constant-time fixed-precision
+// arithmetic over the secp256k1 group order. This means all arithmetic is
+// performed modulo:
+//
+// 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
+//
+// It only implements the arithmetic needed for elliptic curve operations,
+// however, the operations that are not implemented can typically be worked
+// around if absolutely needed. For example, subtraction can be performed by
+// adding the negation.
+//
+// Should it be absolutely necessary, conversion to the standard library
+// math/big.Int can be accomplished by using the Bytes method, slicing the
+// resulting fixed-size array, and feeding it to big.Int.SetBytes. However,
+// that should typically be avoided when possible as conversion to big.Ints
+// requires allocations, is not constant time, and is slower when working modulo
+// the group order.
+type ModNScalar struct {
+ // The scalar is represented as 8 32-bit integers in base 2^32.
+ //
+ // The following depicts the internal representation:
+ // ---------------------------------------------------------
+ // | n[7] | n[6] | ... | n[0] |
+ // | 32 bits | 32 bits | ... | 32 bits |
+ // | Mult: 2^(32*7) | Mult: 2^(32*6) | ... | Mult: 2^(32*0) |
+ // ---------------------------------------------------------
+ //
+ // For example, consider the number 2^87 + 2^42 + 1. It would be
+ // represented as:
+ // n[0] = 1
+ // n[1] = 2^10
+ // n[2] = 2^23
+ // n[3..7] = 0
+ //
+ // The full 256-bit value is then calculated by looping i from 7..0 and
+ // doing sum(n[i] * 2^(32i)) like so:
+ // n[7] * 2^(32*7) = 0 * 2^224 = 0
+ // n[6] * 2^(32*6) = 0 * 2^192 = 0
+ // ...
+ // n[2] * 2^(32*2) = 2^23 * 2^64 = 2^87
+ // n[1] * 2^(32*1) = 2^10 * 2^32 = 2^42
+ // n[0] * 2^(32*0) = 1 * 2^0 = 1
+ // Sum: 0 + 0 + ... + 2^87 + 2^42 + 1 = 2^87 + 2^42 + 1
+ n [8]uint32
+}
+
+// String returns the scalar as a human-readable hex string.
+//
+// This is NOT constant time.
+func (s ModNScalar) String() string {
+ b := s.Bytes()
+ return hex.EncodeToString(b[:])
+}
+
+// Set sets the scalar equal to a copy of the passed one in constant time.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s := new(ModNScalar).Set(s2).Add(1) so that s = s2 + 1 where s2 is not
+// modified.
+func (s *ModNScalar) Set(val *ModNScalar) *ModNScalar {
+ *s = *val
+ return s
+}
+
+// Zero sets the scalar to zero in constant time. A newly created scalar is
+// already set to zero. This function can be useful to clear an existing scalar
+// for reuse.
+func (s *ModNScalar) Zero() {
+ s.n[0] = 0
+ s.n[1] = 0
+ s.n[2] = 0
+ s.n[3] = 0
+ s.n[4] = 0
+ s.n[5] = 0
+ s.n[6] = 0
+ s.n[7] = 0
+}
+
+// IsZero returns whether or not the scalar is equal to zero in constant time.
+func (s *ModNScalar) IsZero() bool {
+ // The scalar can only be zero if no bits are set in any of the words.
+ bits := s.n[0] | s.n[1] | s.n[2] | s.n[3] | s.n[4] | s.n[5] | s.n[6] | s.n[7]
+ return bits == 0
+}
+
+// SetInt sets the scalar to the passed integer in constant time. This is a
+// convenience function since it is fairly common to perform some arithmetic
+// with small native integers.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s := new(ModNScalar).SetInt(2).Mul(s2) so that s = 2 * s2.
+func (s *ModNScalar) SetInt(ui uint32) *ModNScalar {
+ s.Zero()
+ s.n[0] = ui
+ return s
+}
+
+// constantTimeEq returns 1 if a == b or 0 otherwise in constant time.
+func constantTimeEq(a, b uint32) uint32 {
+ return uint32((uint64(a^b) - 1) >> 63)
+}
+
+// constantTimeNotEq returns 1 if a != b or 0 otherwise in constant time.
+func constantTimeNotEq(a, b uint32) uint32 {
+ return ^uint32((uint64(a^b)-1)>>63) & 1
+}
+
+// constantTimeLess returns 1 if a < b or 0 otherwise in constant time.
+func constantTimeLess(a, b uint32) uint32 {
+ return uint32((uint64(a) - uint64(b)) >> 63)
+}
+
+// constantTimeLessOrEq returns 1 if a <= b or 0 otherwise in constant time.
+func constantTimeLessOrEq(a, b uint32) uint32 {
+ return uint32((uint64(a) - uint64(b) - 1) >> 63)
+}
+
+// constantTimeGreater returns 1 if a > b or 0 otherwise in constant time.
+func constantTimeGreater(a, b uint32) uint32 {
+ return constantTimeLess(b, a)
+}
+
+// constantTimeGreaterOrEq returns 1 if a >= b or 0 otherwise in constant time.
+func constantTimeGreaterOrEq(a, b uint32) uint32 {
+ return constantTimeLessOrEq(b, a)
+}
+
+// constantTimeMin returns min(a,b) in constant time.
+func constantTimeMin(a, b uint32) uint32 {
+ return b ^ ((a ^ b) & -constantTimeLess(a, b))
+}
+
+// overflows determines if the current scalar is greater than or equal to the
+// group order in constant time and returns 1 if it is or 0 otherwise.
+func (s *ModNScalar) overflows() uint32 {
+ // The intuition here is that the scalar is greater than the group order if
+ // one of the higher individual words is greater than corresponding word of
+ // the group order and all higher words in the scalar are equal to their
+ // corresponding word of the group order. Since this type is modulo the
+ // group order, being equal is also an overflow back to 0.
+ //
+ // Note that the words 5, 6, and 7 are all the max uint32 value, so there is
+ // no need to test if those individual words of the scalar exceeds them,
+ // hence, only equality is checked for them.
+ highWordsEqual := constantTimeEq(s.n[7], orderWordSeven)
+ highWordsEqual &= constantTimeEq(s.n[6], orderWordSix)
+ highWordsEqual &= constantTimeEq(s.n[5], orderWordFive)
+ overflow := highWordsEqual & constantTimeGreater(s.n[4], orderWordFour)
+ highWordsEqual &= constantTimeEq(s.n[4], orderWordFour)
+ overflow |= highWordsEqual & constantTimeGreater(s.n[3], orderWordThree)
+ highWordsEqual &= constantTimeEq(s.n[3], orderWordThree)
+ overflow |= highWordsEqual & constantTimeGreater(s.n[2], orderWordTwo)
+ highWordsEqual &= constantTimeEq(s.n[2], orderWordTwo)
+ overflow |= highWordsEqual & constantTimeGreater(s.n[1], orderWordOne)
+ highWordsEqual &= constantTimeEq(s.n[1], orderWordOne)
+ overflow |= highWordsEqual & constantTimeGreaterOrEq(s.n[0], orderWordZero)
+
+ return overflow
+}
+
+// reduce256 reduces the current scalar modulo the group order in accordance
+// with the overflows parameter in constant time. The overflows parameter
+// specifies whether or not the scalar is known to be greater than the group
+// order and MUST either be 1 in the case it is or 0 in the case it is not for a
+// correct result.
+func (s *ModNScalar) reduce256(overflows uint32) {
+ // Notice that since s < 2^256 < 2N (where N is the group order), the max
+ // possible number of reductions required is one. Therefore, in the case a
+ // reduction is needed, it can be performed with a single subtraction of N.
+ // Also, recall that subtraction is equivalent to addition by the two's
+ // complement while ignoring the carry.
+ //
+ // When s >= N, the overflows parameter will be 1. Conversely, it will be 0
+ // when s < N. Thus multiplying by the overflows parameter will either
+ // result in 0 or the multiplicand itself.
+ //
+ // Combining the above along with the fact that s + 0 = s, the following is
+ // a constant time implementation that works by either adding 0 or the two's
+ // complement of N as needed.
+ //
+ // The final result will be in the range 0 <= s < N as expected.
+ overflows64 := uint64(overflows)
+ c := uint64(s.n[0]) + overflows64*uint64(orderComplementWordZero)
+ s.n[0] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(s.n[1]) + overflows64*uint64(orderComplementWordOne)
+ s.n[1] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(s.n[2]) + overflows64*uint64(orderComplementWordTwo)
+ s.n[2] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(s.n[3]) + overflows64*uint64(orderComplementWordThree)
+ s.n[3] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(s.n[4]) + overflows64 // * 1
+ s.n[4] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(s.n[5]) // + overflows64 * 0
+ s.n[5] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(s.n[6]) // + overflows64 * 0
+ s.n[6] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(s.n[7]) // + overflows64 * 0
+ s.n[7] = uint32(c & uint32Mask)
+}
+
+// SetBytes interprets the provided array as a 256-bit big-endian unsigned
+// integer, reduces it modulo the group order, sets the scalar to the result,
+// and returns either 1 if it was reduced (aka it overflowed) or 0 otherwise in
+// constant time.
+//
+// Note that a bool is not used here because it is not possible in Go to convert
+// from a bool to numeric value in constant time and many constant-time
+// operations require a numeric value.
+func (s *ModNScalar) SetBytes(b *[32]byte) uint32 {
+ // Pack the 256 total bits across the 8 uint32 words. This could be done
+ // with a for loop, but benchmarks show this unrolled version is about 2
+ // times faster than the variant that uses a loop.
+ s.n[0] = uint32(b[31]) | uint32(b[30])<<8 | uint32(b[29])<<16 | uint32(b[28])<<24
+ s.n[1] = uint32(b[27]) | uint32(b[26])<<8 | uint32(b[25])<<16 | uint32(b[24])<<24
+ s.n[2] = uint32(b[23]) | uint32(b[22])<<8 | uint32(b[21])<<16 | uint32(b[20])<<24
+ s.n[3] = uint32(b[19]) | uint32(b[18])<<8 | uint32(b[17])<<16 | uint32(b[16])<<24
+ s.n[4] = uint32(b[15]) | uint32(b[14])<<8 | uint32(b[13])<<16 | uint32(b[12])<<24
+ s.n[5] = uint32(b[11]) | uint32(b[10])<<8 | uint32(b[9])<<16 | uint32(b[8])<<24
+ s.n[6] = uint32(b[7]) | uint32(b[6])<<8 | uint32(b[5])<<16 | uint32(b[4])<<24
+ s.n[7] = uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
+
+ // The value might be >= N, so reduce it as required and return whether or
+ // not it was reduced.
+ needsReduce := s.overflows()
+ s.reduce256(needsReduce)
+ return needsReduce
+}
+
+// zeroArray32 zeroes the provided 32-byte buffer.
+func zeroArray32(b *[32]byte) {
+ copy(b[:], zero32[:])
+}
+
+// SetByteSlice interprets the provided slice as a 256-bit big-endian unsigned
+// integer (meaning it is truncated to the first 32 bytes), reduces it modulo
+// the group order, sets the scalar to the result, and returns whether or not
+// the resulting truncated 256-bit integer overflowed in constant time.
+//
+// Note that since passing a slice with more than 32 bytes is truncated, it is
+// possible that the truncated value is less than the order of the curve and
+// hence it will not be reported as having overflowed in that case. It is up to
+// the caller to decide whether it needs to provide numbers of the appropriate
+// size or it is acceptable to use this function with the described truncation
+// and overflow behavior.
+func (s *ModNScalar) SetByteSlice(b []byte) bool {
+ var b32 [32]byte
+ b = b[:constantTimeMin(uint32(len(b)), 32)]
+ copy(b32[:], b32[:32-len(b)])
+ copy(b32[32-len(b):], b)
+ result := s.SetBytes(&b32)
+ zeroArray32(&b32)
+ return result != 0
+}
+
+// PutBytesUnchecked unpacks the scalar to a 32-byte big-endian value directly
+// into the passed byte slice in constant time. The target slice must must have
+// at least 32 bytes available or it will panic.
+//
+// There is a similar function, PutBytes, which unpacks the scalar into a
+// 32-byte array directly. This version is provided since it can be useful to
+// write directly into part of a larger buffer without needing a separate
+// allocation.
+//
+// Preconditions:
+// - The target slice MUST have at least 32 bytes available
+func (s *ModNScalar) PutBytesUnchecked(b []byte) {
+ // Unpack the 256 total bits from the 8 uint32 words. This could be done
+ // with a for loop, but benchmarks show this unrolled version is about 2
+ // times faster than the variant which uses a loop.
+ b[31] = byte(s.n[0])
+ b[30] = byte(s.n[0] >> 8)
+ b[29] = byte(s.n[0] >> 16)
+ b[28] = byte(s.n[0] >> 24)
+ b[27] = byte(s.n[1])
+ b[26] = byte(s.n[1] >> 8)
+ b[25] = byte(s.n[1] >> 16)
+ b[24] = byte(s.n[1] >> 24)
+ b[23] = byte(s.n[2])
+ b[22] = byte(s.n[2] >> 8)
+ b[21] = byte(s.n[2] >> 16)
+ b[20] = byte(s.n[2] >> 24)
+ b[19] = byte(s.n[3])
+ b[18] = byte(s.n[3] >> 8)
+ b[17] = byte(s.n[3] >> 16)
+ b[16] = byte(s.n[3] >> 24)
+ b[15] = byte(s.n[4])
+ b[14] = byte(s.n[4] >> 8)
+ b[13] = byte(s.n[4] >> 16)
+ b[12] = byte(s.n[4] >> 24)
+ b[11] = byte(s.n[5])
+ b[10] = byte(s.n[5] >> 8)
+ b[9] = byte(s.n[5] >> 16)
+ b[8] = byte(s.n[5] >> 24)
+ b[7] = byte(s.n[6])
+ b[6] = byte(s.n[6] >> 8)
+ b[5] = byte(s.n[6] >> 16)
+ b[4] = byte(s.n[6] >> 24)
+ b[3] = byte(s.n[7])
+ b[2] = byte(s.n[7] >> 8)
+ b[1] = byte(s.n[7] >> 16)
+ b[0] = byte(s.n[7] >> 24)
+}
+
+// PutBytes unpacks the scalar to a 32-byte big-endian value using the passed
+// byte array in constant time.
+//
+// There is a similar function, PutBytesUnchecked, which unpacks the scalar into
+// a slice that must have at least 32 bytes available. This version is provided
+// since it can be useful to write directly into an array that is type checked.
+//
+// Alternatively, there is also Bytes, which unpacks the scalar into a new array
+// and returns that which can sometimes be more ergonomic in applications that
+// aren't concerned about an additional copy.
+func (s *ModNScalar) PutBytes(b *[32]byte) {
+ s.PutBytesUnchecked(b[:])
+}
+
+// Bytes unpacks the scalar to a 32-byte big-endian value in constant time.
+//
+// See PutBytes and PutBytesUnchecked for variants that allow an array or slice
+// to be passed which can be useful to cut down on the number of allocations
+// by allowing the caller to reuse a buffer or write directly into part of a
+// larger buffer.
+func (s *ModNScalar) Bytes() [32]byte {
+ var b [32]byte
+ s.PutBytesUnchecked(b[:])
+ return b
+}
+
+// IsOdd returns whether or not the scalar is an odd number in constant time.
+func (s *ModNScalar) IsOdd() bool {
+ // Only odd numbers have the bottom bit set.
+ return s.n[0]&1 == 1
+}
+
+// Equals returns whether or not the two scalars are the same in constant time.
+func (s *ModNScalar) Equals(val *ModNScalar) bool {
+ // Xor only sets bits when they are different, so the two scalars can only
+ // be the same if no bits are set after xoring each word.
+ bits := (s.n[0] ^ val.n[0]) | (s.n[1] ^ val.n[1]) | (s.n[2] ^ val.n[2]) |
+ (s.n[3] ^ val.n[3]) | (s.n[4] ^ val.n[4]) | (s.n[5] ^ val.n[5]) |
+ (s.n[6] ^ val.n[6]) | (s.n[7] ^ val.n[7])
+
+ return bits == 0
+}
+
+// Add2 adds the passed two scalars together modulo the group order in constant
+// time and stores the result in s.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s3.Add2(s, s2).AddInt(1) so that s3 = s + s2 + 1.
+func (s *ModNScalar) Add2(val1, val2 *ModNScalar) *ModNScalar {
+ c := uint64(val1.n[0]) + uint64(val2.n[0])
+ s.n[0] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(val1.n[1]) + uint64(val2.n[1])
+ s.n[1] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(val1.n[2]) + uint64(val2.n[2])
+ s.n[2] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(val1.n[3]) + uint64(val2.n[3])
+ s.n[3] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(val1.n[4]) + uint64(val2.n[4])
+ s.n[4] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(val1.n[5]) + uint64(val2.n[5])
+ s.n[5] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(val1.n[6]) + uint64(val2.n[6])
+ s.n[6] = uint32(c & uint32Mask)
+ c = (c >> 32) + uint64(val1.n[7]) + uint64(val2.n[7])
+ s.n[7] = uint32(c & uint32Mask)
+
+ // The result is now 256 bits, but it might still be >= N, so use the
+ // existing normal reduce method for 256-bit values.
+ s.reduce256(uint32(c>>32) + s.overflows())
+ return s
+}
+
+// Add adds the passed scalar to the existing one modulo the group order in
+// constant time and stores the result in s.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s.Add(s2).AddInt(1) so that s = s + s2 + 1.
+func (s *ModNScalar) Add(val *ModNScalar) *ModNScalar {
+ return s.Add2(s, val)
+}
+
+// accumulator96 provides a 96-bit accumulator for use in the intermediate
+// calculations requiring more than 64-bits.
+type accumulator96 struct {
+ n [3]uint32
+}
+
+// Add adds the passed unsigned 64-bit value to the accumulator.
+func (a *accumulator96) Add(v uint64) {
+ low := uint32(v & uint32Mask)
+ hi := uint32(v >> 32)
+ a.n[0] += low
+ hi += constantTimeLess(a.n[0], low) // Carry if overflow in n[0].
+ a.n[1] += hi
+ a.n[2] += constantTimeLess(a.n[1], hi) // Carry if overflow in n[1].
+}
+
+// Rsh32 right shifts the accumulator by 32 bits.
+func (a *accumulator96) Rsh32() {
+ a.n[0] = a.n[1]
+ a.n[1] = a.n[2]
+ a.n[2] = 0
+}
+
+// reduce385 reduces the 385-bit intermediate result in the passed terms modulo
+// the group order in constant time and stores the result in s.
+func (s *ModNScalar) reduce385(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12 uint64) {
+ // At this point, the intermediate result in the passed terms has been
+ // reduced to fit within 385 bits, so reduce it again using the same method
+ // described in reduce512. As before, the intermediate result will end up
+ // being reduced by another 127 bits to 258 bits, thus 9 32-bit terms are
+ // needed for this iteration. The reduced terms are assigned back to t0
+ // through t8.
+ //
+ // Note that several of the intermediate calculations require adding 64-bit
+ // products together which would overflow a uint64, so a 96-bit accumulator
+ // is used instead until the value is reduced enough to use native uint64s.
+
+ // Terms for 2^(32*0).
+ var acc accumulator96
+ acc.n[0] = uint32(t0) // == acc.Add(t0) because acc is guaranteed to be 0.
+ acc.Add(t8 * uint64(orderComplementWordZero))
+ t0 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*1).
+ acc.Add(t1)
+ acc.Add(t8 * uint64(orderComplementWordOne))
+ acc.Add(t9 * uint64(orderComplementWordZero))
+ t1 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*2).
+ acc.Add(t2)
+ acc.Add(t8 * uint64(orderComplementWordTwo))
+ acc.Add(t9 * uint64(orderComplementWordOne))
+ acc.Add(t10 * uint64(orderComplementWordZero))
+ t2 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*3).
+ acc.Add(t3)
+ acc.Add(t8 * uint64(orderComplementWordThree))
+ acc.Add(t9 * uint64(orderComplementWordTwo))
+ acc.Add(t10 * uint64(orderComplementWordOne))
+ acc.Add(t11 * uint64(orderComplementWordZero))
+ t3 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*4).
+ acc.Add(t4)
+ acc.Add(t8) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t9 * uint64(orderComplementWordThree))
+ acc.Add(t10 * uint64(orderComplementWordTwo))
+ acc.Add(t11 * uint64(orderComplementWordOne))
+ acc.Add(t12 * uint64(orderComplementWordZero))
+ t4 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*5).
+ acc.Add(t5)
+ // acc.Add(t8 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t9) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t10 * uint64(orderComplementWordThree))
+ acc.Add(t11 * uint64(orderComplementWordTwo))
+ acc.Add(t12 * uint64(orderComplementWordOne))
+ t5 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*6).
+ acc.Add(t6)
+ // acc.Add(t8 * uint64(orderComplementWordSix)) // 0
+ // acc.Add(t9 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t10) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t11 * uint64(orderComplementWordThree))
+ acc.Add(t12 * uint64(orderComplementWordTwo))
+ t6 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*7).
+ acc.Add(t7)
+ // acc.Add(t8 * uint64(orderComplementWordSeven)) // 0
+ // acc.Add(t9 * uint64(orderComplementWordSix)) // 0
+ // acc.Add(t10 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t11) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t12 * uint64(orderComplementWordThree))
+ t7 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*8).
+ // acc.Add(t9 * uint64(orderComplementWordSeven)) // 0
+ // acc.Add(t10 * uint64(orderComplementWordSix)) // 0
+ // acc.Add(t11 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t12) // * uint64(orderComplementWordFour) // * 1
+ t8 = uint64(acc.n[0])
+ // acc.Rsh32() // No need since not used after this. Guaranteed to be 0.
+
+ // NOTE: All of the remaining multiplications for this iteration result in 0
+ // as they all involve multiplying by combinations of the fifth, sixth, and
+ // seventh words of the two's complement of N, which are 0, so skip them.
+
+ // At this point, the result is reduced to fit within 258 bits, so reduce it
+ // again using a slightly modified version of the same method. The maximum
+ // value in t8 is 2 at this point and therefore multiplying it by each word
+ // of the two's complement of N and adding it to a 32-bit term will result
+ // in a maximum requirement of 33 bits, so it is safe to use native uint64s
+ // here for the intermediate term carry propagation.
+ //
+ // Also, since the maximum value in t8 is 2, this ends up reducing by
+ // another 2 bits to 256 bits.
+ c := t0 + t8*uint64(orderComplementWordZero)
+ s.n[0] = uint32(c & uint32Mask)
+ c = (c >> 32) + t1 + t8*uint64(orderComplementWordOne)
+ s.n[1] = uint32(c & uint32Mask)
+ c = (c >> 32) + t2 + t8*uint64(orderComplementWordTwo)
+ s.n[2] = uint32(c & uint32Mask)
+ c = (c >> 32) + t3 + t8*uint64(orderComplementWordThree)
+ s.n[3] = uint32(c & uint32Mask)
+ c = (c >> 32) + t4 + t8 // * uint64(orderComplementWordFour) == * 1
+ s.n[4] = uint32(c & uint32Mask)
+ c = (c >> 32) + t5 // + t8*uint64(orderComplementWordFive) == 0
+ s.n[5] = uint32(c & uint32Mask)
+ c = (c >> 32) + t6 // + t8*uint64(orderComplementWordSix) == 0
+ s.n[6] = uint32(c & uint32Mask)
+ c = (c >> 32) + t7 // + t8*uint64(orderComplementWordSeven) == 0
+ s.n[7] = uint32(c & uint32Mask)
+
+ // The result is now 256 bits, but it might still be >= N, so use the
+ // existing normal reduce method for 256-bit values.
+ s.reduce256(uint32(c>>32) + s.overflows())
+}
+
+// reduce512 reduces the 512-bit intermediate result in the passed terms modulo
+// the group order down to 385 bits in constant time and stores the result in s.
+func (s *ModNScalar) reduce512(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15 uint64) {
+ // At this point, the intermediate result in the passed terms is grouped
+ // into the respective bases.
+ //
+ // Per [HAC] section 14.3.4: Reduction method of moduli of special form,
+ // when the modulus is of the special form m = b^t - c, where log_2(c) < t,
+ // highly efficient reduction can be achieved per the provided algorithm.
+ //
+ // The secp256k1 group order fits this criteria since it is:
+ // 2^256 - 432420386565659656852420866394968145599
+ //
+ // Technically the max possible value here is (N-1)^2 since the two scalars
+ // being multiplied are always mod N. Nevertheless, it is safer to consider
+ // it to be (2^256-1)^2 = 2^512 - 2^256 + 1 since it is the product of two
+ // 256-bit values.
+ //
+ // The algorithm is to reduce the result modulo the prime by subtracting
+ // multiples of the group order N. However, in order simplify carry
+ // propagation, this adds with the two's complement of N to achieve the same
+ // result.
+ //
+ // Since the two's complement of N has 127 leading zero bits, this will end
+ // up reducing the intermediate result from 512 bits to 385 bits, resulting
+ // in 13 32-bit terms. The reduced terms are assigned back to t0 through
+ // t12.
+ //
+ // Note that several of the intermediate calculations require adding 64-bit
+ // products together which would overflow a uint64, so a 96-bit accumulator
+ // is used instead.
+
+ // Terms for 2^(32*0).
+ var acc accumulator96
+ acc.n[0] = uint32(t0) // == acc.Add(t0) because acc is guaranteed to be 0.
+ acc.Add(t8 * uint64(orderComplementWordZero))
+ t0 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*1).
+ acc.Add(t1)
+ acc.Add(t8 * uint64(orderComplementWordOne))
+ acc.Add(t9 * uint64(orderComplementWordZero))
+ t1 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*2).
+ acc.Add(t2)
+ acc.Add(t8 * uint64(orderComplementWordTwo))
+ acc.Add(t9 * uint64(orderComplementWordOne))
+ acc.Add(t10 * uint64(orderComplementWordZero))
+ t2 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*3).
+ acc.Add(t3)
+ acc.Add(t8 * uint64(orderComplementWordThree))
+ acc.Add(t9 * uint64(orderComplementWordTwo))
+ acc.Add(t10 * uint64(orderComplementWordOne))
+ acc.Add(t11 * uint64(orderComplementWordZero))
+ t3 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*4).
+ acc.Add(t4)
+ acc.Add(t8) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t9 * uint64(orderComplementWordThree))
+ acc.Add(t10 * uint64(orderComplementWordTwo))
+ acc.Add(t11 * uint64(orderComplementWordOne))
+ acc.Add(t12 * uint64(orderComplementWordZero))
+ t4 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*5).
+ acc.Add(t5)
+ // acc.Add(t8 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t9) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t10 * uint64(orderComplementWordThree))
+ acc.Add(t11 * uint64(orderComplementWordTwo))
+ acc.Add(t12 * uint64(orderComplementWordOne))
+ acc.Add(t13 * uint64(orderComplementWordZero))
+ t5 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*6).
+ acc.Add(t6)
+ // acc.Add(t8 * uint64(orderComplementWordSix)) // 0
+ // acc.Add(t9 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t10) // * uint64(orderComplementWordFour)) // * 1
+ acc.Add(t11 * uint64(orderComplementWordThree))
+ acc.Add(t12 * uint64(orderComplementWordTwo))
+ acc.Add(t13 * uint64(orderComplementWordOne))
+ acc.Add(t14 * uint64(orderComplementWordZero))
+ t6 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*7).
+ acc.Add(t7)
+ // acc.Add(t8 * uint64(orderComplementWordSeven)) // 0
+ // acc.Add(t9 * uint64(orderComplementWordSix)) // 0
+ // acc.Add(t10 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t11) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t12 * uint64(orderComplementWordThree))
+ acc.Add(t13 * uint64(orderComplementWordTwo))
+ acc.Add(t14 * uint64(orderComplementWordOne))
+ acc.Add(t15 * uint64(orderComplementWordZero))
+ t7 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*8).
+ // acc.Add(t9 * uint64(orderComplementWordSeven)) // 0
+ // acc.Add(t10 * uint64(orderComplementWordSix)) // 0
+ // acc.Add(t11 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t12) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t13 * uint64(orderComplementWordThree))
+ acc.Add(t14 * uint64(orderComplementWordTwo))
+ acc.Add(t15 * uint64(orderComplementWordOne))
+ t8 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*9).
+ // acc.Add(t10 * uint64(orderComplementWordSeven)) // 0
+ // acc.Add(t11 * uint64(orderComplementWordSix)) // 0
+ // acc.Add(t12 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t13) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t14 * uint64(orderComplementWordThree))
+ acc.Add(t15 * uint64(orderComplementWordTwo))
+ t9 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*10).
+ // acc.Add(t11 * uint64(orderComplementWordSeven)) // 0
+ // acc.Add(t12 * uint64(orderComplementWordSix)) // 0
+ // acc.Add(t13 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t14) // * uint64(orderComplementWordFour) // * 1
+ acc.Add(t15 * uint64(orderComplementWordThree))
+ t10 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*11).
+ // acc.Add(t12 * uint64(orderComplementWordSeven)) // 0
+ // acc.Add(t13 * uint64(orderComplementWordSix)) // 0
+ // acc.Add(t14 * uint64(orderComplementWordFive)) // 0
+ acc.Add(t15) // * uint64(orderComplementWordFour) // * 1
+ t11 = uint64(acc.n[0])
+ acc.Rsh32()
+
+ // NOTE: All of the remaining multiplications for this iteration result in 0
+ // as they all involve multiplying by combinations of the fifth, sixth, and
+ // seventh words of the two's complement of N, which are 0, so skip them.
+
+ // Terms for 2^(32*12).
+ t12 = uint64(acc.n[0])
+ // acc.Rsh32() // No need since not used after this. Guaranteed to be 0.
+
+ // At this point, the result is reduced to fit within 385 bits, so reduce it
+ // again using the same method accordingly.
+ s.reduce385(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12)
+}
+
+// Mul2 multiplies the passed two scalars together modulo the group order in
+// constant time and stores the result in s.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s3.Mul2(s, s2).AddInt(1) so that s3 = (s * s2) + 1.
+func (s *ModNScalar) Mul2(val, val2 *ModNScalar) *ModNScalar {
+ // This could be done with for loops and an array to store the intermediate
+ // terms, but this unrolled version is significantly faster.
+
+ // The overall strategy employed here is:
+ // 1) Calculate the 512-bit product of the two scalars using the standard
+ // pencil-and-paper method.
+ // 2) Reduce the result modulo the prime by effectively subtracting
+ // multiples of the group order N (actually performed by adding multiples
+ // of the two's complement of N to avoid implementing subtraction).
+ // 3) Repeat step 2 noting that each iteration reduces the required number
+ // of bits by 127 because the two's complement of N has 127 leading zero
+ // bits.
+ // 4) Once reduced to 256 bits, call the existing reduce method to perform
+ // a final reduction as needed.
+ //
+ // Note that several of the intermediate calculations require adding 64-bit
+ // products together which would overflow a uint64, so a 96-bit accumulator
+ // is used instead.
+
+ // Terms for 2^(32*0).
+ var acc accumulator96
+ acc.Add(uint64(val.n[0]) * uint64(val2.n[0]))
+ t0 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*1).
+ acc.Add(uint64(val.n[0]) * uint64(val2.n[1]))
+ acc.Add(uint64(val.n[1]) * uint64(val2.n[0]))
+ t1 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*2).
+ acc.Add(uint64(val.n[0]) * uint64(val2.n[2]))
+ acc.Add(uint64(val.n[1]) * uint64(val2.n[1]))
+ acc.Add(uint64(val.n[2]) * uint64(val2.n[0]))
+ t2 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*3).
+ acc.Add(uint64(val.n[0]) * uint64(val2.n[3]))
+ acc.Add(uint64(val.n[1]) * uint64(val2.n[2]))
+ acc.Add(uint64(val.n[2]) * uint64(val2.n[1]))
+ acc.Add(uint64(val.n[3]) * uint64(val2.n[0]))
+ t3 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*4).
+ acc.Add(uint64(val.n[0]) * uint64(val2.n[4]))
+ acc.Add(uint64(val.n[1]) * uint64(val2.n[3]))
+ acc.Add(uint64(val.n[2]) * uint64(val2.n[2]))
+ acc.Add(uint64(val.n[3]) * uint64(val2.n[1]))
+ acc.Add(uint64(val.n[4]) * uint64(val2.n[0]))
+ t4 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*5).
+ acc.Add(uint64(val.n[0]) * uint64(val2.n[5]))
+ acc.Add(uint64(val.n[1]) * uint64(val2.n[4]))
+ acc.Add(uint64(val.n[2]) * uint64(val2.n[3]))
+ acc.Add(uint64(val.n[3]) * uint64(val2.n[2]))
+ acc.Add(uint64(val.n[4]) * uint64(val2.n[1]))
+ acc.Add(uint64(val.n[5]) * uint64(val2.n[0]))
+ t5 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*6).
+ acc.Add(uint64(val.n[0]) * uint64(val2.n[6]))
+ acc.Add(uint64(val.n[1]) * uint64(val2.n[5]))
+ acc.Add(uint64(val.n[2]) * uint64(val2.n[4]))
+ acc.Add(uint64(val.n[3]) * uint64(val2.n[3]))
+ acc.Add(uint64(val.n[4]) * uint64(val2.n[2]))
+ acc.Add(uint64(val.n[5]) * uint64(val2.n[1]))
+ acc.Add(uint64(val.n[6]) * uint64(val2.n[0]))
+ t6 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*7).
+ acc.Add(uint64(val.n[0]) * uint64(val2.n[7]))
+ acc.Add(uint64(val.n[1]) * uint64(val2.n[6]))
+ acc.Add(uint64(val.n[2]) * uint64(val2.n[5]))
+ acc.Add(uint64(val.n[3]) * uint64(val2.n[4]))
+ acc.Add(uint64(val.n[4]) * uint64(val2.n[3]))
+ acc.Add(uint64(val.n[5]) * uint64(val2.n[2]))
+ acc.Add(uint64(val.n[6]) * uint64(val2.n[1]))
+ acc.Add(uint64(val.n[7]) * uint64(val2.n[0]))
+ t7 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*8).
+ acc.Add(uint64(val.n[1]) * uint64(val2.n[7]))
+ acc.Add(uint64(val.n[2]) * uint64(val2.n[6]))
+ acc.Add(uint64(val.n[3]) * uint64(val2.n[5]))
+ acc.Add(uint64(val.n[4]) * uint64(val2.n[4]))
+ acc.Add(uint64(val.n[5]) * uint64(val2.n[3]))
+ acc.Add(uint64(val.n[6]) * uint64(val2.n[2]))
+ acc.Add(uint64(val.n[7]) * uint64(val2.n[1]))
+ t8 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*9).
+ acc.Add(uint64(val.n[2]) * uint64(val2.n[7]))
+ acc.Add(uint64(val.n[3]) * uint64(val2.n[6]))
+ acc.Add(uint64(val.n[4]) * uint64(val2.n[5]))
+ acc.Add(uint64(val.n[5]) * uint64(val2.n[4]))
+ acc.Add(uint64(val.n[6]) * uint64(val2.n[3]))
+ acc.Add(uint64(val.n[7]) * uint64(val2.n[2]))
+ t9 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*10).
+ acc.Add(uint64(val.n[3]) * uint64(val2.n[7]))
+ acc.Add(uint64(val.n[4]) * uint64(val2.n[6]))
+ acc.Add(uint64(val.n[5]) * uint64(val2.n[5]))
+ acc.Add(uint64(val.n[6]) * uint64(val2.n[4]))
+ acc.Add(uint64(val.n[7]) * uint64(val2.n[3]))
+ t10 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*11).
+ acc.Add(uint64(val.n[4]) * uint64(val2.n[7]))
+ acc.Add(uint64(val.n[5]) * uint64(val2.n[6]))
+ acc.Add(uint64(val.n[6]) * uint64(val2.n[5]))
+ acc.Add(uint64(val.n[7]) * uint64(val2.n[4]))
+ t11 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*12).
+ acc.Add(uint64(val.n[5]) * uint64(val2.n[7]))
+ acc.Add(uint64(val.n[6]) * uint64(val2.n[6]))
+ acc.Add(uint64(val.n[7]) * uint64(val2.n[5]))
+ t12 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*13).
+ acc.Add(uint64(val.n[6]) * uint64(val2.n[7]))
+ acc.Add(uint64(val.n[7]) * uint64(val2.n[6]))
+ t13 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // Terms for 2^(32*14).
+ acc.Add(uint64(val.n[7]) * uint64(val2.n[7]))
+ t14 := uint64(acc.n[0])
+ acc.Rsh32()
+
+ // What's left is for 2^(32*15).
+ t15 := uint64(acc.n[0])
+ // acc.Rsh32() // No need since not used after this. Guaranteed to be 0.
+
+ // At this point, all of the terms are grouped into their respective base
+ // and occupy up to 512 bits. Reduce the result accordingly.
+ s.reduce512(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14,
+ t15)
+ return s
+}
+
+// Mul multiplies the passed scalar with the existing one modulo the group order
+// in constant time and stores the result in s.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s.Mul(s2).AddInt(1) so that s = (s * s2) + 1.
+func (s *ModNScalar) Mul(val *ModNScalar) *ModNScalar {
+ return s.Mul2(s, val)
+}
+
+// SquareVal squares the passed scalar modulo the group order in constant time
+// and stores the result in s.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s3.SquareVal(s).Mul(s) so that s3 = s^2 * s = s^3.
+func (s *ModNScalar) SquareVal(val *ModNScalar) *ModNScalar {
+ // This could technically be optimized slightly to take advantage of the
+ // fact that many of the intermediate calculations in squaring are just
+ // doubling, however, benchmarking has shown that due to the need to use a
+ // 96-bit accumulator, any savings are essentially offset by that and
+ // consequently there is no real difference in performance over just
+ // multiplying the value by itself to justify the extra code for now. This
+ // can be revisited in the future if it becomes a bottleneck in practice.
+
+ return s.Mul2(val, val)
+}
+
+// Square squares the scalar modulo the group order in constant time. The
+// existing scalar is modified.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s.Square().Mul(s2) so that s = s^2 * s2.
+func (s *ModNScalar) Square() *ModNScalar {
+ return s.SquareVal(s)
+}
+
+// NegateVal negates the passed scalar modulo the group order and stores the
+// result in s in constant time.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s.NegateVal(s2).AddInt(1) so that s = -s2 + 1.
+func (s *ModNScalar) NegateVal(val *ModNScalar) *ModNScalar {
+ // Since the scalar is already in the range 0 <= val < N, where N is the
+ // group order, negation modulo the group order is just the group order
+ // minus the value. This implies that the result will always be in the
+ // desired range with the sole exception of 0 because N - 0 = N itself.
+ //
+ // Therefore, in order to avoid the need to reduce the result for every
+ // other case in order to achieve constant time, this creates a mask that is
+ // all 0s in the case of the scalar being negated is 0 and all 1s otherwise
+ // and bitwise ands that mask with each word.
+ //
+ // Finally, to simplify the carry propagation, this adds the two's
+ // complement of the scalar to N in order to achieve the same result.
+ bits := val.n[0] | val.n[1] | val.n[2] | val.n[3] | val.n[4] | val.n[5] |
+ val.n[6] | val.n[7]
+ mask := uint64(uint32Mask * constantTimeNotEq(bits, 0))
+ c := uint64(orderWordZero) + (uint64(^val.n[0]) + 1)
+ s.n[0] = uint32(c & mask)
+ c = (c >> 32) + uint64(orderWordOne) + uint64(^val.n[1])
+ s.n[1] = uint32(c & mask)
+ c = (c >> 32) + uint64(orderWordTwo) + uint64(^val.n[2])
+ s.n[2] = uint32(c & mask)
+ c = (c >> 32) + uint64(orderWordThree) + uint64(^val.n[3])
+ s.n[3] = uint32(c & mask)
+ c = (c >> 32) + uint64(orderWordFour) + uint64(^val.n[4])
+ s.n[4] = uint32(c & mask)
+ c = (c >> 32) + uint64(orderWordFive) + uint64(^val.n[5])
+ s.n[5] = uint32(c & mask)
+ c = (c >> 32) + uint64(orderWordSix) + uint64(^val.n[6])
+ s.n[6] = uint32(c & mask)
+ c = (c >> 32) + uint64(orderWordSeven) + uint64(^val.n[7])
+ s.n[7] = uint32(c & mask)
+ return s
+}
+
+// Negate negates the scalar modulo the group order in constant time. The
+// existing scalar is modified.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s.Negate().AddInt(1) so that s = -s + 1.
+func (s *ModNScalar) Negate() *ModNScalar {
+ return s.NegateVal(s)
+}
+
+// InverseValNonConst finds the modular multiplicative inverse of the passed
+// scalar and stores result in s in *non-constant* time.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s3.InverseVal(s1).Mul(s2) so that s3 = s1^-1 * s2.
+func (s *ModNScalar) InverseValNonConst(val *ModNScalar) *ModNScalar {
+ // This is making use of big integers for now. Ideally it will be replaced
+ // with an implementation that does not depend on big integers.
+ valBytes := val.Bytes()
+ bigVal := new(big.Int).SetBytes(valBytes[:])
+ bigVal.ModInverse(bigVal, curveParams.N)
+ s.SetByteSlice(bigVal.Bytes())
+ return s
+}
+
+// InverseNonConst finds the modular multiplicative inverse of the scalar in
+// *non-constant* time. The existing scalar is modified.
+//
+// The scalar is returned to support chaining. This enables syntax like:
+// s.Inverse().Mul(s2) so that s = s^-1 * s2.
+func (s *ModNScalar) InverseNonConst() *ModNScalar {
+ return s.InverseValNonConst(s)
+}
+
+// IsOverHalfOrder returns whether or not the scalar exceeds the group order
+// divided by 2 in constant time.
+func (s *ModNScalar) IsOverHalfOrder() bool {
+ // The intuition here is that the scalar is greater than half of the group
+ // order if one of the higher individual words is greater than the
+ // corresponding word of the half group order and all higher words in the
+ // scalar are equal to their corresponding word of the half group order.
+ //
+ // Note that the words 4, 5, and 6 are all the max uint32 value, so there is
+ // no need to test if those individual words of the scalar exceeds them,
+ // hence, only equality is checked for them.
+ result := constantTimeGreater(s.n[7], halfOrderWordSeven)
+ highWordsEqual := constantTimeEq(s.n[7], halfOrderWordSeven)
+ highWordsEqual &= constantTimeEq(s.n[6], halfOrderWordSix)
+ highWordsEqual &= constantTimeEq(s.n[5], halfOrderWordFive)
+ highWordsEqual &= constantTimeEq(s.n[4], halfOrderWordFour)
+ result |= highWordsEqual & constantTimeGreater(s.n[3], halfOrderWordThree)
+ highWordsEqual &= constantTimeEq(s.n[3], halfOrderWordThree)
+ result |= highWordsEqual & constantTimeGreater(s.n[2], halfOrderWordTwo)
+ highWordsEqual &= constantTimeEq(s.n[2], halfOrderWordTwo)
+ result |= highWordsEqual & constantTimeGreater(s.n[1], halfOrderWordOne)
+ highWordsEqual &= constantTimeEq(s.n[1], halfOrderWordOne)
+ result |= highWordsEqual & constantTimeGreater(s.n[0], halfOrderWordZero)
+
+ return result != 0
+}