summaryrefslogtreecommitdiff
path: root/cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go
diff options
context:
space:
mode:
Diffstat (limited to 'cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go')
-rw-r--r--cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go284
1 files changed, 284 insertions, 0 deletions
diff --git a/cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go b/cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go
new file mode 100644
index 0000000..45ea727
--- /dev/null
+++ b/cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go
@@ -0,0 +1,284 @@
+// Copyright 2014 The go-ethereum Authors
+// This file is part of the go-ethereum library.
+//
+// The go-ethereum library is free software: you can redistribute it and/or modify
+// it under the terms of the GNU Lesser General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// The go-ethereum library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public License
+// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
+
+package crypto
+
+import (
+ "bufio"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
+ "encoding/hex"
+ "errors"
+ "fmt"
+ "hash"
+ "io"
+ "math/big"
+ "os"
+
+ "github.com/ethereum/go-ethereum/common"
+ "github.com/ethereum/go-ethereum/common/math"
+ "github.com/ethereum/go-ethereum/rlp"
+ "golang.org/x/crypto/sha3"
+)
+
+//SignatureLength indicates the byte length required to carry a signature with recovery id.
+const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id
+
+// RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
+const RecoveryIDOffset = 64
+
+// DigestLength sets the signature digest exact length
+const DigestLength = 32
+
+var (
+ secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
+ secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2))
+)
+
+var errInvalidPubkey = errors.New("invalid secp256k1 public key")
+
+// KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports
+// Read to get a variable amount of data from the hash state. Read is faster than Sum
+// because it doesn't copy the internal state, but also modifies the internal state.
+type KeccakState interface {
+ hash.Hash
+ Read([]byte) (int, error)
+}
+
+// NewKeccakState creates a new KeccakState
+func NewKeccakState() KeccakState {
+ return sha3.NewLegacyKeccak256().(KeccakState)
+}
+
+// HashData hashes the provided data using the KeccakState and returns a 32 byte hash
+func HashData(kh KeccakState, data []byte) (h common.Hash) {
+ kh.Reset()
+ kh.Write(data)
+ kh.Read(h[:])
+ return h
+}
+
+// Keccak256 calculates and returns the Keccak256 hash of the input data.
+func Keccak256(data ...[]byte) []byte {
+ b := make([]byte, 32)
+ d := NewKeccakState()
+ for _, b := range data {
+ d.Write(b)
+ }
+ d.Read(b)
+ return b
+}
+
+// Keccak256Hash calculates and returns the Keccak256 hash of the input data,
+// converting it to an internal Hash data structure.
+func Keccak256Hash(data ...[]byte) (h common.Hash) {
+ d := NewKeccakState()
+ for _, b := range data {
+ d.Write(b)
+ }
+ d.Read(h[:])
+ return h
+}
+
+// Keccak512 calculates and returns the Keccak512 hash of the input data.
+func Keccak512(data ...[]byte) []byte {
+ d := sha3.NewLegacyKeccak512()
+ for _, b := range data {
+ d.Write(b)
+ }
+ return d.Sum(nil)
+}
+
+// CreateAddress creates an ethereum address given the bytes and the nonce
+func CreateAddress(b common.Address, nonce uint64) common.Address {
+ data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
+ return common.BytesToAddress(Keccak256(data)[12:])
+}
+
+// CreateAddress2 creates an ethereum address given the address bytes, initial
+// contract code hash and a salt.
+func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address {
+ return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
+}
+
+// ToECDSA creates a private key with the given D value.
+func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
+ return toECDSA(d, true)
+}
+
+// ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
+// never be used unless you are sure the input is valid and want to avoid hitting
+// errors due to bad origin encoding (0 prefixes cut off).
+func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
+ priv, _ := toECDSA(d, false)
+ return priv
+}
+
+// toECDSA creates a private key with the given D value. The strict parameter
+// controls whether the key's length should be enforced at the curve size or
+// it can also accept legacy encodings (0 prefixes).
+func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
+ priv := new(ecdsa.PrivateKey)
+ priv.PublicKey.Curve = S256()
+ if strict && 8*len(d) != priv.Params().BitSize {
+ return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
+ }
+ priv.D = new(big.Int).SetBytes(d)
+
+ // The priv.D must < N
+ if priv.D.Cmp(secp256k1N) >= 0 {
+ return nil, fmt.Errorf("invalid private key, >=N")
+ }
+ // The priv.D must not be zero or negative.
+ if priv.D.Sign() <= 0 {
+ return nil, fmt.Errorf("invalid private key, zero or negative")
+ }
+
+ priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
+ if priv.PublicKey.X == nil {
+ return nil, errors.New("invalid private key")
+ }
+ return priv, nil
+}
+
+// FromECDSA exports a private key into a binary dump.
+func FromECDSA(priv *ecdsa.PrivateKey) []byte {
+ if priv == nil {
+ return nil
+ }
+ return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
+}
+
+// UnmarshalPubkey converts bytes to a secp256k1 public key.
+func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
+ x, y := elliptic.Unmarshal(S256(), pub)
+ if x == nil {
+ return nil, errInvalidPubkey
+ }
+ return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
+}
+
+func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
+ if pub == nil || pub.X == nil || pub.Y == nil {
+ return nil
+ }
+ return elliptic.Marshal(S256(), pub.X, pub.Y)
+}
+
+// HexToECDSA parses a secp256k1 private key.
+func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
+ b, err := hex.DecodeString(hexkey)
+ if byteErr, ok := err.(hex.InvalidByteError); ok {
+ return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr))
+ } else if err != nil {
+ return nil, errors.New("invalid hex data for private key")
+ }
+ return ToECDSA(b)
+}
+
+// LoadECDSA loads a secp256k1 private key from the given file.
+func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
+ fd, err := os.Open(file)
+ if err != nil {
+ return nil, err
+ }
+ defer fd.Close()
+
+ r := bufio.NewReader(fd)
+ buf := make([]byte, 64)
+ n, err := readASCII(buf, r)
+ if err != nil {
+ return nil, err
+ } else if n != len(buf) {
+ return nil, fmt.Errorf("key file too short, want 64 hex characters")
+ }
+ if err := checkKeyFileEnd(r); err != nil {
+ return nil, err
+ }
+
+ return HexToECDSA(string(buf))
+}
+
+// readASCII reads into 'buf', stopping when the buffer is full or
+// when a non-printable control character is encountered.
+func readASCII(buf []byte, r *bufio.Reader) (n int, err error) {
+ for ; n < len(buf); n++ {
+ buf[n], err = r.ReadByte()
+ switch {
+ case err == io.EOF || buf[n] < '!':
+ return n, nil
+ case err != nil:
+ return n, err
+ }
+ }
+ return n, nil
+}
+
+// checkKeyFileEnd skips over additional newlines at the end of a key file.
+func checkKeyFileEnd(r *bufio.Reader) error {
+ for i := 0; ; i++ {
+ b, err := r.ReadByte()
+ switch {
+ case err == io.EOF:
+ return nil
+ case err != nil:
+ return err
+ case b != '\n' && b != '\r':
+ return fmt.Errorf("invalid character %q at end of key file", b)
+ case i >= 2:
+ return errors.New("key file too long, want 64 hex characters")
+ }
+ }
+}
+
+// SaveECDSA saves a secp256k1 private key to the given file with
+// restrictive permissions. The key data is saved hex-encoded.
+func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
+ k := hex.EncodeToString(FromECDSA(key))
+ return os.WriteFile(file, []byte(k), 0600)
+}
+
+// GenerateKey generates a new private key.
+func GenerateKey() (*ecdsa.PrivateKey, error) {
+ return ecdsa.GenerateKey(S256(), rand.Reader)
+}
+
+// ValidateSignatureValues verifies whether the signature values are valid with
+// the given chain rules. The v value is assumed to be either 0 or 1.
+func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
+ if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
+ return false
+ }
+ // reject upper range of s values (ECDSA malleability)
+ // see discussion in secp256k1/libsecp256k1/include/secp256k1.h
+ if homestead && s.Cmp(secp256k1halfN) > 0 {
+ return false
+ }
+ // Frontier: allow s to be in full N range
+ return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1)
+}
+
+func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
+ pubBytes := FromECDSAPub(&p)
+ return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
+}
+
+func zeroBytes(bytes []byte) {
+ for i := range bytes {
+ bytes[i] = 0
+ }
+}