diff options
Diffstat (limited to 'cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go')
| -rw-r--r-- | cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go b/cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go new file mode 100644 index 0000000..45ea727 --- /dev/null +++ b/cli/vendor/github.com/ethereum/go-ethereum/crypto/crypto.go @@ -0,0 +1,284 @@ +// Copyright 2014 The go-ethereum Authors +// This file is part of the go-ethereum library. +// +// The go-ethereum library is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// The go-ethereum library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public License +// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. + +package crypto + +import ( + "bufio" + "crypto/ecdsa" + "crypto/elliptic" + "crypto/rand" + "encoding/hex" + "errors" + "fmt" + "hash" + "io" + "math/big" + "os" + + "github.com/ethereum/go-ethereum/common" + "github.com/ethereum/go-ethereum/common/math" + "github.com/ethereum/go-ethereum/rlp" + "golang.org/x/crypto/sha3" +) + +//SignatureLength indicates the byte length required to carry a signature with recovery id. +const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id + +// RecoveryIDOffset points to the byte offset within the signature that contains the recovery id. +const RecoveryIDOffset = 64 + +// DigestLength sets the signature digest exact length +const DigestLength = 32 + +var ( + secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16) + secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2)) +) + +var errInvalidPubkey = errors.New("invalid secp256k1 public key") + +// KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports +// Read to get a variable amount of data from the hash state. Read is faster than Sum +// because it doesn't copy the internal state, but also modifies the internal state. +type KeccakState interface { + hash.Hash + Read([]byte) (int, error) +} + +// NewKeccakState creates a new KeccakState +func NewKeccakState() KeccakState { + return sha3.NewLegacyKeccak256().(KeccakState) +} + +// HashData hashes the provided data using the KeccakState and returns a 32 byte hash +func HashData(kh KeccakState, data []byte) (h common.Hash) { + kh.Reset() + kh.Write(data) + kh.Read(h[:]) + return h +} + +// Keccak256 calculates and returns the Keccak256 hash of the input data. +func Keccak256(data ...[]byte) []byte { + b := make([]byte, 32) + d := NewKeccakState() + for _, b := range data { + d.Write(b) + } + d.Read(b) + return b +} + +// Keccak256Hash calculates and returns the Keccak256 hash of the input data, +// converting it to an internal Hash data structure. +func Keccak256Hash(data ...[]byte) (h common.Hash) { + d := NewKeccakState() + for _, b := range data { + d.Write(b) + } + d.Read(h[:]) + return h +} + +// Keccak512 calculates and returns the Keccak512 hash of the input data. +func Keccak512(data ...[]byte) []byte { + d := sha3.NewLegacyKeccak512() + for _, b := range data { + d.Write(b) + } + return d.Sum(nil) +} + +// CreateAddress creates an ethereum address given the bytes and the nonce +func CreateAddress(b common.Address, nonce uint64) common.Address { + data, _ := rlp.EncodeToBytes([]interface{}{b, nonce}) + return common.BytesToAddress(Keccak256(data)[12:]) +} + +// CreateAddress2 creates an ethereum address given the address bytes, initial +// contract code hash and a salt. +func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address { + return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:]) +} + +// ToECDSA creates a private key with the given D value. +func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) { + return toECDSA(d, true) +} + +// ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost +// never be used unless you are sure the input is valid and want to avoid hitting +// errors due to bad origin encoding (0 prefixes cut off). +func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey { + priv, _ := toECDSA(d, false) + return priv +} + +// toECDSA creates a private key with the given D value. The strict parameter +// controls whether the key's length should be enforced at the curve size or +// it can also accept legacy encodings (0 prefixes). +func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) { + priv := new(ecdsa.PrivateKey) + priv.PublicKey.Curve = S256() + if strict && 8*len(d) != priv.Params().BitSize { + return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize) + } + priv.D = new(big.Int).SetBytes(d) + + // The priv.D must < N + if priv.D.Cmp(secp256k1N) >= 0 { + return nil, fmt.Errorf("invalid private key, >=N") + } + // The priv.D must not be zero or negative. + if priv.D.Sign() <= 0 { + return nil, fmt.Errorf("invalid private key, zero or negative") + } + + priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d) + if priv.PublicKey.X == nil { + return nil, errors.New("invalid private key") + } + return priv, nil +} + +// FromECDSA exports a private key into a binary dump. +func FromECDSA(priv *ecdsa.PrivateKey) []byte { + if priv == nil { + return nil + } + return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8) +} + +// UnmarshalPubkey converts bytes to a secp256k1 public key. +func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) { + x, y := elliptic.Unmarshal(S256(), pub) + if x == nil { + return nil, errInvalidPubkey + } + return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil +} + +func FromECDSAPub(pub *ecdsa.PublicKey) []byte { + if pub == nil || pub.X == nil || pub.Y == nil { + return nil + } + return elliptic.Marshal(S256(), pub.X, pub.Y) +} + +// HexToECDSA parses a secp256k1 private key. +func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) { + b, err := hex.DecodeString(hexkey) + if byteErr, ok := err.(hex.InvalidByteError); ok { + return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr)) + } else if err != nil { + return nil, errors.New("invalid hex data for private key") + } + return ToECDSA(b) +} + +// LoadECDSA loads a secp256k1 private key from the given file. +func LoadECDSA(file string) (*ecdsa.PrivateKey, error) { + fd, err := os.Open(file) + if err != nil { + return nil, err + } + defer fd.Close() + + r := bufio.NewReader(fd) + buf := make([]byte, 64) + n, err := readASCII(buf, r) + if err != nil { + return nil, err + } else if n != len(buf) { + return nil, fmt.Errorf("key file too short, want 64 hex characters") + } + if err := checkKeyFileEnd(r); err != nil { + return nil, err + } + + return HexToECDSA(string(buf)) +} + +// readASCII reads into 'buf', stopping when the buffer is full or +// when a non-printable control character is encountered. +func readASCII(buf []byte, r *bufio.Reader) (n int, err error) { + for ; n < len(buf); n++ { + buf[n], err = r.ReadByte() + switch { + case err == io.EOF || buf[n] < '!': + return n, nil + case err != nil: + return n, err + } + } + return n, nil +} + +// checkKeyFileEnd skips over additional newlines at the end of a key file. +func checkKeyFileEnd(r *bufio.Reader) error { + for i := 0; ; i++ { + b, err := r.ReadByte() + switch { + case err == io.EOF: + return nil + case err != nil: + return err + case b != '\n' && b != '\r': + return fmt.Errorf("invalid character %q at end of key file", b) + case i >= 2: + return errors.New("key file too long, want 64 hex characters") + } + } +} + +// SaveECDSA saves a secp256k1 private key to the given file with +// restrictive permissions. The key data is saved hex-encoded. +func SaveECDSA(file string, key *ecdsa.PrivateKey) error { + k := hex.EncodeToString(FromECDSA(key)) + return os.WriteFile(file, []byte(k), 0600) +} + +// GenerateKey generates a new private key. +func GenerateKey() (*ecdsa.PrivateKey, error) { + return ecdsa.GenerateKey(S256(), rand.Reader) +} + +// ValidateSignatureValues verifies whether the signature values are valid with +// the given chain rules. The v value is assumed to be either 0 or 1. +func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool { + if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 { + return false + } + // reject upper range of s values (ECDSA malleability) + // see discussion in secp256k1/libsecp256k1/include/secp256k1.h + if homestead && s.Cmp(secp256k1halfN) > 0 { + return false + } + // Frontier: allow s to be in full N range + return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1) +} + +func PubkeyToAddress(p ecdsa.PublicKey) common.Address { + pubBytes := FromECDSAPub(&p) + return common.BytesToAddress(Keccak256(pubBytes[1:])[12:]) +} + +func zeroBytes(bytes []byte) { + for i := range bytes { + bytes[i] = 0 + } +} |
