1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
// Copyright 2020-2021 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package secp256k1
// References:
// [SECG]: Recommended Elliptic Curve Domain Parameters
// https://www.secg.org/sec2-v2.pdf
//
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
import (
"crypto/ecdsa"
"crypto/elliptic"
"math/big"
)
// CurveParams contains the parameters for the secp256k1 curve.
type CurveParams struct {
// P is the prime used in the secp256k1 field.
P *big.Int
// N is the order of the secp256k1 curve group generated by the base point.
N *big.Int
// Gx and Gy are the x and y coordinate of the base point, respectively.
Gx, Gy *big.Int
// BitSize is the size of the underlying secp256k1 field in bits.
BitSize int
// H is the cofactor of the secp256k1 curve.
H int
// ByteSize is simply the bit size / 8 and is provided for convenience
// since it is calculated repeatedly.
ByteSize int
}
// Curve parameters taken from [SECG] section 2.4.1.
var curveParams = CurveParams{
P: fromHex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"),
N: fromHex("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"),
Gx: fromHex("79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798"),
Gy: fromHex("483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8"),
BitSize: 256,
H: 1,
ByteSize: 256 / 8,
}
// Params returns the secp256k1 curve parameters for convenience.
func Params() *CurveParams {
return &curveParams
}
// KoblitzCurve provides an implementation for secp256k1 that fits the ECC Curve
// interface from crypto/elliptic.
type KoblitzCurve struct {
*elliptic.CurveParams
}
// bigAffineToJacobian takes an affine point (x, y) as big integers and converts
// it to Jacobian point with Z=1.
func bigAffineToJacobian(x, y *big.Int, result *JacobianPoint) {
result.X.SetByteSlice(x.Bytes())
result.Y.SetByteSlice(y.Bytes())
result.Z.SetInt(1)
}
// jacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
// converts it to an affine point as big integers.
func jacobianToBigAffine(point *JacobianPoint) (*big.Int, *big.Int) {
point.ToAffine()
// Convert the field values for the now affine point to big.Ints.
x3, y3 := new(big.Int), new(big.Int)
x3.SetBytes(point.X.Bytes()[:])
y3.SetBytes(point.Y.Bytes()[:])
return x3, y3
}
// Params returns the parameters for the curve.
//
// This is part of the elliptic.Curve interface implementation.
func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
return curve.CurveParams
}
// IsOnCurve returns whether or not the affine point (x,y) is on the curve.
//
// This is part of the elliptic.Curve interface implementation. This function
// differs from the crypto/elliptic algorithm since a = 0 not -3.
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
// Convert big ints to a Jacobian point for faster arithmetic.
var point JacobianPoint
bigAffineToJacobian(x, y, &point)
return isOnCurve(&point.X, &point.Y)
}
// Add returns the sum of (x1,y1) and (x2,y2).
//
// This is part of the elliptic.Curve interface implementation.
func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
// A point at infinity is the identity according to the group law for
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
if x1.Sign() == 0 && y1.Sign() == 0 {
return x2, y2
}
if x2.Sign() == 0 && y2.Sign() == 0 {
return x1, y1
}
// Convert the affine coordinates from big integers to Jacobian points,
// do the point addition in Jacobian projective space, and convert the
// Jacobian point back to affine big.Ints.
var p1, p2, result JacobianPoint
bigAffineToJacobian(x1, y1, &p1)
bigAffineToJacobian(x2, y2, &p2)
AddNonConst(&p1, &p2, &result)
return jacobianToBigAffine(&result)
}
// Double returns 2*(x1,y1).
//
// This is part of the elliptic.Curve interface implementation.
func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
if y1.Sign() == 0 {
return new(big.Int), new(big.Int)
}
// Convert the affine coordinates from big integers to Jacobian points,
// do the point doubling in Jacobian projective space, and convert the
// Jacobian point back to affine big.Ints.
var point, result JacobianPoint
bigAffineToJacobian(x1, y1, &point)
DoubleNonConst(&point, &result)
return jacobianToBigAffine(&result)
}
// moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This
// is done by doing a simple modulo curve.N. We can do this since G^N = 1 and
// thus any other valid point on the elliptic curve has the same order.
func moduloReduce(k []byte) []byte {
// Since the order of G is curve.N, we can use a much smaller number by
// doing modulo curve.N
if len(k) > curveParams.ByteSize {
tmpK := new(big.Int).SetBytes(k)
tmpK.Mod(tmpK, curveParams.N)
return tmpK.Bytes()
}
return k
}
// ScalarMult returns k*(Bx, By) where k is a big endian integer.
//
// This is part of the elliptic.Curve interface implementation.
func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
// Convert the affine coordinates from big integers to Jacobian points,
// do the multiplication in Jacobian projective space, and convert the
// Jacobian point back to affine big.Ints.
var kModN ModNScalar
kModN.SetByteSlice(moduloReduce(k))
var point, result JacobianPoint
bigAffineToJacobian(Bx, By, &point)
ScalarMultNonConst(&kModN, &point, &result)
return jacobianToBigAffine(&result)
}
// ScalarBaseMult returns k*G where G is the base point of the group and k is a
// big endian integer.
//
// This is part of the elliptic.Curve interface implementation.
func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
// Perform the multiplication and convert the Jacobian point back to affine
// big.Ints.
var kModN ModNScalar
kModN.SetByteSlice(moduloReduce(k))
var result JacobianPoint
ScalarBaseMultNonConst(&kModN, &result)
return jacobianToBigAffine(&result)
}
// X returns the x coordinate of the public key.
func (p *PublicKey) X() *big.Int {
return new(big.Int).SetBytes(p.x.Bytes()[:])
}
// Y returns the y coordinate of the public key.
func (p *PublicKey) Y() *big.Int {
return new(big.Int).SetBytes(p.y.Bytes()[:])
}
// ToECDSA returns the public key as a *ecdsa.PublicKey.
func (p *PublicKey) ToECDSA() *ecdsa.PublicKey {
return &ecdsa.PublicKey{
Curve: S256(),
X: p.X(),
Y: p.Y(),
}
}
// ToECDSA returns the private key as a *ecdsa.PrivateKey.
func (p *PrivateKey) ToECDSA() *ecdsa.PrivateKey {
var privKeyBytes [PrivKeyBytesLen]byte
p.Key.PutBytes(&privKeyBytes)
var result JacobianPoint
ScalarBaseMultNonConst(&p.Key, &result)
x, y := jacobianToBigAffine(&result)
newPrivKey := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: S256(),
X: x,
Y: y,
},
D: new(big.Int).SetBytes(privKeyBytes[:]),
}
zeroArray32(&privKeyBytes)
return newPrivKey
}
// fromHex converts the passed hex string into a big integer pointer and will
// panic is there is an error. This is only provided for the hard-coded
// constants so errors in the source code can bet detected. It will only (and
// must only) be called for initialization purposes.
func fromHex(s string) *big.Int {
if s == "" {
return big.NewInt(0)
}
r, ok := new(big.Int).SetString(s, 16)
if !ok {
panic("invalid hex in source file: " + s)
}
return r
}
// secp256k1 is a global instance of the KoblitzCurve implementation which in
// turn embeds and implements elliptic.CurveParams.
var secp256k1 = &KoblitzCurve{
CurveParams: &elliptic.CurveParams{
P: curveParams.P,
N: curveParams.N,
B: fromHex("0000000000000000000000000000000000000000000000000000000000000007"),
Gx: curveParams.Gx,
Gy: curveParams.Gy,
BitSize: curveParams.BitSize,
Name: "secp256k1",
},
}
// S256 returns a Curve which implements secp256k1.
func S256() *KoblitzCurve {
return secp256k1
}
|